Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Reconciling bathymetric anomalies of marginal sea basins through magmatic and cooling processes

View through CrossRef
       Bathymetry of marginal sea basins is commonly deeper than the half-space cooling prediction for large oceans, but what controls this pattern is poorly understood. Here, based on abundant seismic sections with increasingly available databases, we perform an enhanced approach that specifically corrects for post-spreading cooling to reassess thermal subsidence across the Southwest Subbasin (SWSB) and the broader South China Sea (SCS) basin. We attribute the current excessive subsidence of the SCS basin primarily as a response to the post-spreading cooling process, which has global applicability to other marginal sea basins and accounts for at least 86% of the observed depth anomaly. Additionally, the mode of magma supply during seafloor spreading plays a crucial role in shaping reconstructed shallower bathymetry of the SCS basin relative to predictions from the half-space cooling model. A stronger magma supply deriving from the regional subduction system can explain the relatively shallow depth developed during the opening of the SCS compared to large oceans. In contrast, a westward decayed magma supply, driven by localized rift propagation induced by the inherited pre-Cenozoic heterogeneous lithospheric structure of South China, attributes to subsidence discrepancies among sub-basins and within the SWSB.        The sediment-corrected depth of most marginal seas is, on average, more than 500 m deeper than that of large oceans, with maximum anomalies ranging from -0.95 to -2.70 km (in 0.5° bins). The sediment-corrected depths exhibit statistically poor correlations with the spreading rate, indicating that the thermal evolution of marginal seas is not primarily controlled by the spreading rate, unlike large oceans. Neither can this anomaly be fully explained by dynamic topography driven by large-scale mantle convection or by localized variations in the degrees and patterns of subduction systems, although the latter may be an important factor influencing the bathymetry of still-active marginal seas. We interpret at least 44.5% of these anomalies as a result of long-term post-spreading thermal subsidence in inactive marginal seas, with magmatic processes influencing bathymetry during oceanic plate formation. We propose that the post-spreading secular cooling, together with the variable mode of magma supply and potential dynamic subsidence processes driven by subducting slabs, play pivotal roles in the formation of the topographic anomalies within the oceanic basins of marginal seas.
Title: Reconciling bathymetric anomalies of marginal sea basins through magmatic and cooling processes
Description:
       Bathymetry of marginal sea basins is commonly deeper than the half-space cooling prediction for large oceans, but what controls this pattern is poorly understood.
Here, based on abundant seismic sections with increasingly available databases, we perform an enhanced approach that specifically corrects for post-spreading cooling to reassess thermal subsidence across the Southwest Subbasin (SWSB) and the broader South China Sea (SCS) basin.
We attribute the current excessive subsidence of the SCS basin primarily as a response to the post-spreading cooling process, which has global applicability to other marginal sea basins and accounts for at least 86% of the observed depth anomaly.
Additionally, the mode of magma supply during seafloor spreading plays a crucial role in shaping reconstructed shallower bathymetry of the SCS basin relative to predictions from the half-space cooling model.
A stronger magma supply deriving from the regional subduction system can explain the relatively shallow depth developed during the opening of the SCS compared to large oceans.
In contrast, a westward decayed magma supply, driven by localized rift propagation induced by the inherited pre-Cenozoic heterogeneous lithospheric structure of South China, attributes to subsidence discrepancies among sub-basins and within the SWSB.
        The sediment-corrected depth of most marginal seas is, on average, more than 500 m deeper than that of large oceans, with maximum anomalies ranging from -0.
95 to -2.
70 km (in 0.
5° bins).
The sediment-corrected depths exhibit statistically poor correlations with the spreading rate, indicating that the thermal evolution of marginal seas is not primarily controlled by the spreading rate, unlike large oceans.
Neither can this anomaly be fully explained by dynamic topography driven by large-scale mantle convection or by localized variations in the degrees and patterns of subduction systems, although the latter may be an important factor influencing the bathymetry of still-active marginal seas.
We interpret at least 44.
5% of these anomalies as a result of long-term post-spreading thermal subsidence in inactive marginal seas, with magmatic processes influencing bathymetry during oceanic plate formation.
We propose that the post-spreading secular cooling, together with the variable mode of magma supply and potential dynamic subsidence processes driven by subducting slabs, play pivotal roles in the formation of the topographic anomalies within the oceanic basins of marginal seas.

Related Results

Are Cervical Ribs Indicators of Childhood Cancer? A Narrative Review
Are Cervical Ribs Indicators of Childhood Cancer? A Narrative Review
Abstract A cervical rib (CR), also known as a supernumerary or extra rib, is an additional rib that forms above the first rib, resulting from the overgrowth of the transverse proce...
On the Rock-basins in the Granite of the Dartmoor District, Devonshire
On the Rock-basins in the Granite of the Dartmoor District, Devonshire
In this Memoir the origin of Rock-basins in the Granite of Dartmoor and its vicinity is alone considered; and it is not attempted to draw therefrom any law as to the manner of the ...
REVIEW OF MODERN BATHYMETRIC SURVEY TECHNIQUES AND THEIR IMPACT ON OFFSHORE ENERGY DEVELOPMENT
REVIEW OF MODERN BATHYMETRIC SURVEY TECHNIQUES AND THEIR IMPACT ON OFFSHORE ENERGY DEVELOPMENT
This paper presents a comprehensive review of modern bathymetric survey techniques and their impact on offshore energy development. Bathymetric surveys play a crucial role in mappi...
When will the marginal sea grow up?
When will the marginal sea grow up?
<p>The back-arc marginal sea is a small ocean basin located between the volcanic arc and the continental crust. This area is not only an important gathering place for...
Seasonal Arctic sea ice predictability and prediction
Seasonal Arctic sea ice predictability and prediction
Arctic sea ice plays a central role in the Earth’s climate. Changes in the sea ice on seasonal-to-interannual timescales impact ecosystems, populations and a growing number of stak...
Temporal and Spatial Correlation Analysis of Mineralization during Magmatic Hydrothermal Activity Evolution
Temporal and Spatial Correlation Analysis of Mineralization during Magmatic Hydrothermal Activity Evolution
The emplacement and crystallization of magmatic rocks are the main ways of forming the crust, which have a decisive influence on the geochemical environment and mineralization. In ...
Origin and Classification of Sedimentary Basins
Origin and Classification of Sedimentary Basins
ABSTRACT A sedimentary basin is a domain of regional subsidence that can be characterized in space, time, and sedimentary fill. Tectonic subsidence of basins is c...

Back to Top