Javascript must be enabled to continue!
Impact of imperfections on correlation-based quantum information protocols
View through CrossRef
Quantum information science is a rapidly evolving field both from the theoretical and the experimental viewpoint, motivated by the fact that protocols exploiting quantum resources can perform tasks that are unfeasible in classical information theory. Interestingly, the trustworthiness of quantum information protocols can be certified relying upon as few assumptions as possible adopting the "device-independent" (DI) framework. In this scenario no assumption is made on the internal working of the involved devices, which are treated as black boxes. The quantum certification of DI protocols is guaranteed by the nonlocal character of the correlations between the inputs and outputs of those boxes. Unfortunately, demonstrating nonlocality is highly demanding from the implementation point of view, since low levels of experimental imperfections are tolerated. Those imperfections (e.g.noise and losses) may alter the input/output statistics, thus undermining the reliability of DI protocols. The experimental requirements for the security of DI protocols can be relaxed considering partly-DI scenarios, in which additional assumptions on the devices or the systems used in the protocols are made. Indeed, partly-DI protocols offer two main advantages: First, they are more secure than standard device-dependent protocols; second, they are more robust to experimental imperfections than their fully-DI counterparts. The general aim of this Thesis is to provide bounds on imperfections and losses arising in experimental implementations of DI and partly-DI protocols that are necessary or sufficient for security.
In the first part, we tackle the problem of secure implementation of quantum key distribution protocols in the DI and partly-DI scenarios. The goal is to establish conditions on the detection efficiency necessary for the security of those protocols. To this aim, we present a general attack on the detectors from which we derive bounds on the critical detection efficiency that do not depend on the number of measurements applied nor on the number of outcomes.
In the second part, we study randomness certification in the steering and the prepare-and-measure scenarios. We devise an optimal method for quantifying the local and global randomness that can be extracted in both scenarios. Applying this method we provide sufficient conditions for randomness certification in the presence of noise and losses. Moreover, we present a method that for any fixed state gives the optimal measurements and steering inequality that certify the most randomness.
The next question we address is the secure implementation of semi-device-independent (SDI) protocols, whose quantum certification is provided by dimension witnesses. We study the problem of the robustness of DI dimension witnesses to loss, in the case in which shared randomness is allowed between the preparing and measuring devices. The main result in this part is to provide thresholds for the critical detection efficiency necessary to perform reliable dimension witnessing. Furthermore, we study detection loophole attacks on SDI quantum and classical protocols in the case in which the preparing and measuring devices do not share correlations. We determine general conditions under which a potential eavesdropper cannot exploit the experimental losses to hack such protocols.
Finally, we focus on a recently demonstrated quantum process and its inverse, namely the quantum state joining and splitting processes. We prove that a linear-optical realization of the quantum state joining of two photons relying only on postselection - and thus simpler than the implementation originally proposed - is not possible, implying that it requires at least one ancilla photon. Furthermore, we demonstrate that the quantum joining process is equivalent to the preparation of a particular class of three-qubit entangled states, showing that this process can also find application for generating complex cluster states of entangled photons.
En las últimas décadas, el campo de estudio de la información cuántica está tomando especial relevancia tanto desde el punto de vista teórico como experimental, debido a que los protocolos basados en la física cuántica pueden desempeñar acciones que son prohibidas en los protocolos basados en la física clásica. Especialmente, se ha demostrado que se puede garantizar la fiabilidad de protocolos cuánticos basandose en las mínimas suposiciones posibles, adoptando el escenario denominado 'device-independent' (DI). En este caso, no se hace ninguna suposición sobre el funcionamento de los sistemas e instrumentación usada, siendo tratados como cajas negras. La certificación cuántica de los protocolos DI está basada en la nonlocalidad de las correlaciones entre inputs y outputs de estas cajas. Desafortunadamente, demostrar experimentalmente esta nonlocalidad es un reto actual muy exigente debido a que se requiere un nivel muy bajo de imperfecciones (por ej. ruido y pérdidas). Este requisito se puede relajar considerando escenarios parcialmente DI, en los que se hacen suposiciones adicionales sobre los dispositivos usados. Por un lado, estos protocolos son generalmente menos exigentes desde el punto de vista de la implementación; por otro lado, son más seguros que los 'device-dependent'. El objetivo general de esta Tesis es establecer bajo qué condiciones las imperfecciones experimentales no comprometen la seguridad de protocolos DI y parcialmente DI. Para desarrollar este objetivo, esta Tesis se divide en diferentes apartados. En la primera parte, se consideran protocolos de quantum key distribution en escenarios DI y parcialmente DI, presentando un ataque general a los detectores. De este estudio se derivan los límites para la eficiencia de detección crítica necesaria para una implementación segura de estos protocolos, obteniéndose que no dependen ni del número de medidas aplicadas ni del número de outcomes. En la segunda parte, se estudia la certificación de aleatoriedad en los escenarios de steering y prepare-and-measure. Se introduce un método óptimo para cuantificar la aleatoriedad local y global que se pueden extraer en ambos escenarios y se derivan las condiciones suficientes para certificar la aleatoriedad en presencia de ruido y pérdidas. Además, se presenta un método que obtiene para cada estado las medidas y la desigualdad de steering óptimas que certifican la máxima aleatoriedad. En la tercera parte, se considera la implementación de protocolos semi-device-independent (SDI), cuya certificación cuántica es provista por las dimension witnesses. Se estudia el problema de la robustez a las pérdidas de las dimension witnesses en el escenario DI (DIDWs) cuando el instrumento de preparación y el de medida comparten correlaciones preestablecidas. En ese contexto se determinan los umbrales para la eficiencia de detección crítica necesaria para la fiabilidad de DIDWs. Además, se estudian ataques a detectores en protocolos SDI cuánticos y clásicos, en el caso en que los aparatos de preparación y de medida no estén correlacionados, y se analizan las condiciones para que un espía potencial no pueda hackear estos protocolos usando las pérdidas experimentales. Por último, se estudian los procesos cuánticos demostrados recientemente de quantum state joining/splitting. Se prueba que una realización con óptica lineal del quantum state joining de dos fotones usando solo postselección (por tanto más simple de la demonstrada originalmente) no es posible, sino que este tipo de implementación requiere al menos un fotón auxiliar. Además, se demuestra que el quantum state joining es equivalente a preparar una clase particular de estados entrelazados de 3 qubits, mostrándose una posible aplicación del quantum joining de estados fotónicos para generar estados cluster complejos de fotones entrelazados
Title: Impact of imperfections on correlation-based quantum information protocols
Description:
Quantum information science is a rapidly evolving field both from the theoretical and the experimental viewpoint, motivated by the fact that protocols exploiting quantum resources can perform tasks that are unfeasible in classical information theory.
Interestingly, the trustworthiness of quantum information protocols can be certified relying upon as few assumptions as possible adopting the "device-independent" (DI) framework.
In this scenario no assumption is made on the internal working of the involved devices, which are treated as black boxes.
The quantum certification of DI protocols is guaranteed by the nonlocal character of the correlations between the inputs and outputs of those boxes.
Unfortunately, demonstrating nonlocality is highly demanding from the implementation point of view, since low levels of experimental imperfections are tolerated.
Those imperfections (e.
g.
noise and losses) may alter the input/output statistics, thus undermining the reliability of DI protocols.
The experimental requirements for the security of DI protocols can be relaxed considering partly-DI scenarios, in which additional assumptions on the devices or the systems used in the protocols are made.
Indeed, partly-DI protocols offer two main advantages: First, they are more secure than standard device-dependent protocols; second, they are more robust to experimental imperfections than their fully-DI counterparts.
The general aim of this Thesis is to provide bounds on imperfections and losses arising in experimental implementations of DI and partly-DI protocols that are necessary or sufficient for security.
In the first part, we tackle the problem of secure implementation of quantum key distribution protocols in the DI and partly-DI scenarios.
The goal is to establish conditions on the detection efficiency necessary for the security of those protocols.
To this aim, we present a general attack on the detectors from which we derive bounds on the critical detection efficiency that do not depend on the number of measurements applied nor on the number of outcomes.
In the second part, we study randomness certification in the steering and the prepare-and-measure scenarios.
We devise an optimal method for quantifying the local and global randomness that can be extracted in both scenarios.
Applying this method we provide sufficient conditions for randomness certification in the presence of noise and losses.
Moreover, we present a method that for any fixed state gives the optimal measurements and steering inequality that certify the most randomness.
The next question we address is the secure implementation of semi-device-independent (SDI) protocols, whose quantum certification is provided by dimension witnesses.
We study the problem of the robustness of DI dimension witnesses to loss, in the case in which shared randomness is allowed between the preparing and measuring devices.
The main result in this part is to provide thresholds for the critical detection efficiency necessary to perform reliable dimension witnessing.
Furthermore, we study detection loophole attacks on SDI quantum and classical protocols in the case in which the preparing and measuring devices do not share correlations.
We determine general conditions under which a potential eavesdropper cannot exploit the experimental losses to hack such protocols.
Finally, we focus on a recently demonstrated quantum process and its inverse, namely the quantum state joining and splitting processes.
We prove that a linear-optical realization of the quantum state joining of two photons relying only on postselection - and thus simpler than the implementation originally proposed - is not possible, implying that it requires at least one ancilla photon.
Furthermore, we demonstrate that the quantum joining process is equivalent to the preparation of a particular class of three-qubit entangled states, showing that this process can also find application for generating complex cluster states of entangled photons.
En las últimas décadas, el campo de estudio de la información cuántica está tomando especial relevancia tanto desde el punto de vista teórico como experimental, debido a que los protocolos basados en la física cuántica pueden desempeñar acciones que son prohibidas en los protocolos basados en la física clásica.
Especialmente, se ha demostrado que se puede garantizar la fiabilidad de protocolos cuánticos basandose en las mínimas suposiciones posibles, adoptando el escenario denominado 'device-independent' (DI).
En este caso, no se hace ninguna suposición sobre el funcionamento de los sistemas e instrumentación usada, siendo tratados como cajas negras.
La certificación cuántica de los protocolos DI está basada en la nonlocalidad de las correlaciones entre inputs y outputs de estas cajas.
Desafortunadamente, demostrar experimentalmente esta nonlocalidad es un reto actual muy exigente debido a que se requiere un nivel muy bajo de imperfecciones (por ej.
ruido y pérdidas).
Este requisito se puede relajar considerando escenarios parcialmente DI, en los que se hacen suposiciones adicionales sobre los dispositivos usados.
Por un lado, estos protocolos son generalmente menos exigentes desde el punto de vista de la implementación; por otro lado, son más seguros que los 'device-dependent'.
El objetivo general de esta Tesis es establecer bajo qué condiciones las imperfecciones experimentales no comprometen la seguridad de protocolos DI y parcialmente DI.
Para desarrollar este objetivo, esta Tesis se divide en diferentes apartados.
En la primera parte, se consideran protocolos de quantum key distribution en escenarios DI y parcialmente DI, presentando un ataque general a los detectores.
De este estudio se derivan los límites para la eficiencia de detección crítica necesaria para una implementación segura de estos protocolos, obteniéndose que no dependen ni del número de medidas aplicadas ni del número de outcomes.
En la segunda parte, se estudia la certificación de aleatoriedad en los escenarios de steering y prepare-and-measure.
Se introduce un método óptimo para cuantificar la aleatoriedad local y global que se pueden extraer en ambos escenarios y se derivan las condiciones suficientes para certificar la aleatoriedad en presencia de ruido y pérdidas.
Además, se presenta un método que obtiene para cada estado las medidas y la desigualdad de steering óptimas que certifican la máxima aleatoriedad.
En la tercera parte, se considera la implementación de protocolos semi-device-independent (SDI), cuya certificación cuántica es provista por las dimension witnesses.
Se estudia el problema de la robustez a las pérdidas de las dimension witnesses en el escenario DI (DIDWs) cuando el instrumento de preparación y el de medida comparten correlaciones preestablecidas.
En ese contexto se determinan los umbrales para la eficiencia de detección crítica necesaria para la fiabilidad de DIDWs.
Además, se estudian ataques a detectores en protocolos SDI cuánticos y clásicos, en el caso en que los aparatos de preparación y de medida no estén correlacionados, y se analizan las condiciones para que un espía potencial no pueda hackear estos protocolos usando las pérdidas experimentales.
Por último, se estudian los procesos cuánticos demostrados recientemente de quantum state joining/splitting.
Se prueba que una realización con óptica lineal del quantum state joining de dos fotones usando solo postselección (por tanto más simple de la demonstrada originalmente) no es posible, sino que este tipo de implementación requiere al menos un fotón auxiliar.
Además, se demuestra que el quantum state joining es equivalente a preparar una clase particular de estados entrelazados de 3 qubits, mostrándose una posible aplicación del quantum joining de estados fotónicos para generar estados cluster complejos de fotones entrelazados.
Related Results
Advanced frameworks for fraud detection leveraging quantum machine learning and data science in fintech ecosystems
Advanced frameworks for fraud detection leveraging quantum machine learning and data science in fintech ecosystems
The rapid expansion of the fintech sector has brought with it an increasing demand for robust and sophisticated fraud detection systems capable of managing large volumes of financi...
Advancements in Quantum Computing and Information Science
Advancements in Quantum Computing and Information Science
Abstract: The chapter "Advancements in Quantum Computing and Information Science" explores the fundamental principles, historical development, and modern applications of quantum co...
Integrating quantum neural networks with machine learning algorithms for optimizing healthcare diagnostics and treatment outcomes
Integrating quantum neural networks with machine learning algorithms for optimizing healthcare diagnostics and treatment outcomes
The rapid advancements in artificial intelligence (AI) and quantum computing have catalyzed an unprecedented shift in the methodologies utilized for healthcare diagnostics and trea...
Quantum information outside quantum information
Quantum information outside quantum information
Quantum theory, as counter-intuitive as a theory can get, has turned out to make predictions of the physical world that match observations so precisely that it has been described a...
Revolutionizing multimodal healthcare diagnosis, treatment pathways, and prognostic analytics through quantum neural networks
Revolutionizing multimodal healthcare diagnosis, treatment pathways, and prognostic analytics through quantum neural networks
The advent of quantum computing has introduced significant potential to revolutionize healthcare through quantum neural networks (QNNs), offering unprecedented capabilities in proc...
Optimizing IETF multimedia signaling protocols and architectures in 3GPP networks : an evolutionary approach
Optimizing IETF multimedia signaling protocols and architectures in 3GPP networks : an evolutionary approach
Signaling in Next Generation IP-based networks heavily relies in the family of multimedia signaling protocols defined by IETF. Two of these signaling protocols are RTSP and SIP, wh...
Witnessing non-Markovian evolutions
Witnessing non-Markovian evolutions
The formulation of quantum physics stands among the most revolutionary theories of the twentieth century. During the first decades of this century, many phenomena concerning the mi...
Quantum Communication and Cybersecurity
Quantum Communication and Cybersecurity
Abstract:
This book presents a comprehensive and interdisciplinary examination of the convergence between quantum information science and cybersecurity. It addresses the foundation...

