Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

The Long-Term Effects of Developmental Hypoxia on Cardiac Mitochondrial Function in Snapping Turtles

View through CrossRef
It is well established that adult vertebrates acclimatizing to hypoxic environments undergo mitochondrial remodeling to enhance oxygen delivery, maintain ATP, and limit oxidative stress. However, many vertebrates also encounter oxygen deprivation during embryonic development. The effects of developmental hypoxia on mitochondrial function are likely to be more profound, because environmental stress during early life can permanently alter cellular physiology and morphology. To this end, we investigated the long-term effects of developmental hypoxia on mitochondrial function in a species that regularly encounters hypoxia during development—the common snapping turtle (Chelydra serpentina). Turtle eggs were incubated in 21% or 10% oxygen from 20% of embryonic development until hatching, and both cohorts were subsequently reared in 21% oxygen for 8 months. Ventricular mitochondria were isolated, and mitochondrial respiration and reactive oxygen species (ROS) production were measured with a microrespirometer. Compared to normoxic controls, juvenile turtles from hypoxic incubations had lower Leak respiration, higher P:O ratios, and reduced rates of ROS production. Interestingly, these same attributes occur in adult vertebrates that acclimatize to hypoxia. We speculate that these adjustments might improve mitochondrial hypoxia tolerance, which would be beneficial for turtles during breath-hold diving and overwintering in anoxic environments.
Title: The Long-Term Effects of Developmental Hypoxia on Cardiac Mitochondrial Function in Snapping Turtles
Description:
It is well established that adult vertebrates acclimatizing to hypoxic environments undergo mitochondrial remodeling to enhance oxygen delivery, maintain ATP, and limit oxidative stress.
However, many vertebrates also encounter oxygen deprivation during embryonic development.
The effects of developmental hypoxia on mitochondrial function are likely to be more profound, because environmental stress during early life can permanently alter cellular physiology and morphology.
To this end, we investigated the long-term effects of developmental hypoxia on mitochondrial function in a species that regularly encounters hypoxia during development—the common snapping turtle (Chelydra serpentina).
Turtle eggs were incubated in 21% or 10% oxygen from 20% of embryonic development until hatching, and both cohorts were subsequently reared in 21% oxygen for 8 months.
Ventricular mitochondria were isolated, and mitochondrial respiration and reactive oxygen species (ROS) production were measured with a microrespirometer.
Compared to normoxic controls, juvenile turtles from hypoxic incubations had lower Leak respiration, higher P:O ratios, and reduced rates of ROS production.
Interestingly, these same attributes occur in adult vertebrates that acclimatize to hypoxia.
We speculate that these adjustments might improve mitochondrial hypoxia tolerance, which would be beneficial for turtles during breath-hold diving and overwintering in anoxic environments.

Related Results

Embryonic hypoxia programmes postprandial cardiovascular function in adult common snapping turtles (Chelydra serpentina)
Embryonic hypoxia programmes postprandial cardiovascular function in adult common snapping turtles (Chelydra serpentina)
Reduced oxygen availability (hypoxia) is a potent stressor during embryonic development, altering the trajectory of trait maturation and organismal phenotype. We previously documen...
Heart rate and its relationship with activity in free-ranging Cheloniidae sea turtles
Heart rate and its relationship with activity in free-ranging Cheloniidae sea turtles
AbstractThe primary oxygen stores in Cheloniidae sea turtles are in the lungs. Therefore, management of blood oxygen transportation to peripheral tissues by cardiovascular adjustme...
Mitochondria Fusion and Fission
Mitochondria Fusion and Fission
Abstract Mitochondrial structural dynamics is regulated by the fusion or fission of these organelles. Recently published evidence indicates the ...
Status of marine turtle rehabilitation in Queensland
Status of marine turtle rehabilitation in Queensland
Rehabilitation of marine turtles in Queensland has multifaceted objectives. It treats individual animals, serves to educate the public, and contributes to conservation. We examined...
Exogenous Pyruvate Is Required for Cell Adaption to Chronic Hypoxia
Exogenous Pyruvate Is Required for Cell Adaption to Chronic Hypoxia
Hypoxia is a common feature in solid tumors due to the imbalance between the poor development of vascularization and rapid proliferation of tumor cells. Tumor hypoxia is associated...
Acute vs. Chronic vs. Cyclic Hypoxia: Their Differential Dynamics, Molecular Mechanisms, and Effects on Tumor Progression
Acute vs. Chronic vs. Cyclic Hypoxia: Their Differential Dynamics, Molecular Mechanisms, and Effects on Tumor Progression
Hypoxia has been shown to increase the aggressiveness and severity of tumor progression. Along with chronic and acute hypoxic regions, solid tumors contain regions of cycling hypox...

Back to Top