Javascript must be enabled to continue!
Glacier–volcano interactions deduced by SAR interferometry
View through CrossRef
AbstractGlacier-surface displacements produced by geothermal and volcanic activity beneath Vatnajökull ice cap in Iceland are described by field surveys of the surface topography combined with interferograms acquired from repeat-pass synthetic aperture radar images. A simple ice-flow model serves well to confirm the basic interpretation of the observations. The observations cover the period October 1996–January 1999 and comprise: (a) the ice-flow field during the infilling of the depressions created by the subglacial Gjálp eruption of October 1996, (b) the extent and displacement of the floating ice cover of the subglacier lakes of Grímsvötn and the Skaftá cauldrons, (c) surface displacements above the subglacier pathways of the jökulhlaups from the Gjálp eruption site and the Grímsvötn lake, (d) detection of areas of increased basal sliding due to lubrication by water, and (e) detection of spots of temporal displacement that may be related to altering subglacial volcanic activity. At the depression created by the Gjálp eruption, the maximum surface displacement rate away from the radar decreased from 27 cm d−1to 2 cm d−1over the period January 1997–January 1999. The observed vertical displacement of the ice cover of Grímsvötn changed from an uplift rate of 50 cm d−1to sinking of 48 cm d−1, and for Skaftá cauldrons from 2 cm d to 25 cm d−1.
International Glaciological Society
Title: Glacier–volcano interactions deduced by SAR interferometry
Description:
AbstractGlacier-surface displacements produced by geothermal and volcanic activity beneath Vatnajökull ice cap in Iceland are described by field surveys of the surface topography combined with interferograms acquired from repeat-pass synthetic aperture radar images.
A simple ice-flow model serves well to confirm the basic interpretation of the observations.
The observations cover the period October 1996–January 1999 and comprise: (a) the ice-flow field during the infilling of the depressions created by the subglacial Gjálp eruption of October 1996, (b) the extent and displacement of the floating ice cover of the subglacier lakes of Grímsvötn and the Skaftá cauldrons, (c) surface displacements above the subglacier pathways of the jökulhlaups from the Gjálp eruption site and the Grímsvötn lake, (d) detection of areas of increased basal sliding due to lubrication by water, and (e) detection of spots of temporal displacement that may be related to altering subglacial volcanic activity.
At the depression created by the Gjálp eruption, the maximum surface displacement rate away from the radar decreased from 27 cm d−1to 2 cm d−1over the period January 1997–January 1999.
The observed vertical displacement of the ice cover of Grímsvötn changed from an uplift rate of 50 cm d−1to sinking of 48 cm d−1, and for Skaftá cauldrons from 2 cm d to 25 cm d−1.
Related Results
Glacier Mass Loss Simulation Based on Remote Sensing Data: A Case Study of the Yala Glacier and the Qiyi Glacier in the Third Pole
Glacier Mass Loss Simulation Based on Remote Sensing Data: A Case Study of the Yala Glacier and the Qiyi Glacier in the Third Pole
The climate warming over the Third Pole is twice as large as that in other regions and glacier mass loss is considered to be more intensive in the region. However, due to the vast ...
Holocene thinning history of David Glacier, Antarctica
Holocene thinning history of David Glacier, Antarctica
<p>The Antarctic Ice Sheet is a significant component of the Earth System, modulating Earth‘s sea level and climate. Present day and projected ice mass losses from Antarctica...
Studies on the Basal-Ice Zone of Findelen Glacier, Switzerland
Studies on the Basal-Ice Zone of Findelen Glacier, Switzerland
Basal and englacial debris layers have been observed to coincide distinctly with the location of glacier thrust planes or shear zones, e.g. at Shoestring Glacier (Brugman and Meier...
Glaciers Variation at ‘Shocking’ Pace in the Northeastern Margin of Tibetan Plateau from 1957 to 21st Century: A Case Study of Qiyi Glacier
Glaciers Variation at ‘Shocking’ Pace in the Northeastern Margin of Tibetan Plateau from 1957 to 21st Century: A Case Study of Qiyi Glacier
Accelerating glacier shrinkage is one of the most consequential of global warming. Yet, projections for the region remain ambiguous because of the tremendous spatial heterogeneity,...
Glacier Speed-Up Events and Subglacial Hydrology on the Lower Franz Josef Glacier, New Zealand
Glacier Speed-Up Events and Subglacial Hydrology on the Lower Franz Josef Glacier, New Zealand
<p>The contribution of glacier mass loss to future sea level rise is still poorly constrained (Lemke and others, 2007). One of the remaining unknowns is how water inputs infl...
The 2020 Activity of Kamchatkan Volcanoes and Danger to Aviation
The 2020 Activity of Kamchatkan Volcanoes and Danger to Aviation
<p>Strong explosive eruptions of volcanoes are the most dangerous for aircraft because they can produce in a few hours or days to the atmosphere and the stratosphere ...
Glacier Mass Balance in the Nyainqentanglha Mountains between 2000 and 2017 Retrieved from ZiYuan-3 Stereo Images and the SRTM DEM
Glacier Mass Balance in the Nyainqentanglha Mountains between 2000 and 2017 Retrieved from ZiYuan-3 Stereo Images and the SRTM DEM
Mountain glaciers are excellent indicators of climate change and have an important role in the terrestrial water cycle and food security in many parts of the world. Glaciers are th...
Debris cover and the thinning of Kennicott Glacier, Alaska
Debris cover and the thinning of Kennicott Glacier, Alaska
<p>Many glaciers in High Mountain Asia are experiencing the debris-cover anomaly. The Kennicott Glacier, a large Alaskan Glacier, is also thinning most rapidly under ...

