Javascript must be enabled to continue!
Research on New Interval-Valued Fractional Integrals with Exponential Kernel and Their Applications
View through CrossRef
This paper aims to introduce a new fractional extension of the interval Hermite–Hadamard (HH), HH–Fejér, and Pachpatte-type inequalities for left- and right-interval-valued harmonically convex mappings (LRIVH convex mappings) with an exponential function in the kernel. We use fractional operators to develop several generalizations, capturing unique outcomes that are currently under investigation, while also introducing a new operator. Generally, we propose two methods that, in conjunction with more generalized fractional integral operators with an exponential function in the kernel, can address certain novel generalizations of increasing mappings under the assumption of LRIV convexity, yielding some noteworthy results. The results produced by applying the suggested scheme show that the computational effects are extremely accurate, flexible, efficient, and simple to implement in order to explore the path of upcoming intricate waveform and circuit theory research.
Title: Research on New Interval-Valued Fractional Integrals with Exponential Kernel and Their Applications
Description:
This paper aims to introduce a new fractional extension of the interval Hermite–Hadamard (HH), HH–Fejér, and Pachpatte-type inequalities for left- and right-interval-valued harmonically convex mappings (LRIVH convex mappings) with an exponential function in the kernel.
We use fractional operators to develop several generalizations, capturing unique outcomes that are currently under investigation, while also introducing a new operator.
Generally, we propose two methods that, in conjunction with more generalized fractional integral operators with an exponential function in the kernel, can address certain novel generalizations of increasing mappings under the assumption of LRIV convexity, yielding some noteworthy results.
The results produced by applying the suggested scheme show that the computational effects are extremely accurate, flexible, efficient, and simple to implement in order to explore the path of upcoming intricate waveform and circuit theory research.
Related Results
Solving Undamped and Damped Fractional Oscillators via Integral Rohit Transform
Solving Undamped and Damped Fractional Oscillators via Integral Rohit Transform
Background: The dynamics of fractional oscillators are generally described by fractional differential equations, which include the fractional derivative of the Caputo or Riemann-Li...
Genetic Variation in Potential Kernel Size Affects Kernel Growth and Yield of Sorghum
Genetic Variation in Potential Kernel Size Affects Kernel Growth and Yield of Sorghum
Large‐seededness can increase grain yield in sorghum [Sorghum bicolor (L.) Moench] if larger kernel size more than compensates for the associated reduction in kernel number. The ai...
Physicochemical Properties of Wheat Fractionated by Wheat Kernel Thickness and Separated by Kernel Specific Density
Physicochemical Properties of Wheat Fractionated by Wheat Kernel Thickness and Separated by Kernel Specific Density
ABSTRACTTwo wheat cultivars, soft white winter wheat Yang‐mai 11 and hard white winter wheat Zheng‐mai 9023, were fractionated by kernel thickness into five sections; the fractiona...
Sorghum Kernel Weight
Sorghum Kernel Weight
The influence of genotype and panicle position on sorghum [Sorghum bicolor (L.) Moench] kernel growth is poorly understood. In the present study, sorghum kernel weight (KW) differe...
Gohar Fractional Derivative: Theory and Applications
Gohar Fractional Derivative: Theory and Applications
The local fractional derivatives marked the beginning of a new era in fractional calculus. Due to their that have never been observed before in the field, they are able to fill in ...
Λ-fractional Analysis. Basic Theory and Applications
Λ-fractional Analysis. Basic Theory and Applications
Fractional Analysis is a mathematical method based on different principles from those governing the well-known mathematical principles of differential and integral calculus. The ma...
A New Mixed Fractional Derivative with Applications in Computational Biology
A New Mixed Fractional Derivative with Applications in Computational Biology
This study develops a new definition of a fractional derivative that mixes the definitions of fractional derivatives with singular and non-singular kernels. This developed definiti...
A New Mixed Fractional Derivative with Application to Computational Biology
A New Mixed Fractional Derivative with Application to Computational Biology
This study develops a new definition of fractional derivative that mixes the definitions of fractional derivatives with singular and non-singular kernels. Such developed definition...

