Javascript must be enabled to continue!
Computational modeling of frequency-dependent neocortical response to thalamic neurostimulation in epilepsy
View through CrossRef
The therapeutic application of centromedian nucleus stimulation (CMS) has been limited by uncertainties regarding its mechanism of action. In this study, we used stereoelectro-encephalography (SEEG) signals recorded from a patient with refractory epilepsy, caused by focal cortical dysplasia, which is a malformation of cortical development. SEEG recordings revealed that neocortical interictal discharges could be suppressed by CMS. These effects were found to be frequency-dependent: while 50 Hz CMS induced no change in neocortical epileptiform activity, CMS at 70 Hz, 100 Hz and 150 Hz led to periods of suppression of neocortical epileptiform activity. These periods were shown to have different durations depending on the stimulation protocol. We developed a neurophysiologically-plausible thalamocortical model to explain these observations. This model included glutamatergic subpopulations and GABAergic subpopulations in the neocortical and the thalamic compartments. Synaptic inhibition and short-term plasticity mechanisms were integrated into the latter compartment. We hypothesized that the enhanced activation of thalamic inhibitory subpopulations during high frequency CMS (>70Hz) would result in GABA spillover which activated synaptic GABAergic receptors on the thalamocortical relay cells. This decreased the thalamic driving-input to the neocortex, hence suppressing interictal discharges in the dysplastic neocortical tissue. While inhibition of thalamocortical relay cells was maximal for CMS at 70 Hz and 100 Hz, this was not the case for 150 Hz CMS, suggesting that presynaptic GABAergic receptors were activated and that the rate of GABA reuptake was increased. Thus, our model suggests that the transient suppression of the neocortical epileptic activity with CMS may be primarily due to extra-synaptic tonic inhibition in the thalamocortical relay cells. These findings contribute to a deeper understanding of high-frequency CMS in epilepsy and pave the way for further research and optimization of this therapeutic approach.
Public Library of Science (PLoS)
Title: Computational modeling of frequency-dependent neocortical response to thalamic neurostimulation in epilepsy
Description:
The therapeutic application of centromedian nucleus stimulation (CMS) has been limited by uncertainties regarding its mechanism of action.
In this study, we used stereoelectro-encephalography (SEEG) signals recorded from a patient with refractory epilepsy, caused by focal cortical dysplasia, which is a malformation of cortical development.
SEEG recordings revealed that neocortical interictal discharges could be suppressed by CMS.
These effects were found to be frequency-dependent: while 50 Hz CMS induced no change in neocortical epileptiform activity, CMS at 70 Hz, 100 Hz and 150 Hz led to periods of suppression of neocortical epileptiform activity.
These periods were shown to have different durations depending on the stimulation protocol.
We developed a neurophysiologically-plausible thalamocortical model to explain these observations.
This model included glutamatergic subpopulations and GABAergic subpopulations in the neocortical and the thalamic compartments.
Synaptic inhibition and short-term plasticity mechanisms were integrated into the latter compartment.
We hypothesized that the enhanced activation of thalamic inhibitory subpopulations during high frequency CMS (>70Hz) would result in GABA spillover which activated synaptic GABAergic receptors on the thalamocortical relay cells.
This decreased the thalamic driving-input to the neocortex, hence suppressing interictal discharges in the dysplastic neocortical tissue.
While inhibition of thalamocortical relay cells was maximal for CMS at 70 Hz and 100 Hz, this was not the case for 150 Hz CMS, suggesting that presynaptic GABAergic receptors were activated and that the rate of GABA reuptake was increased.
Thus, our model suggests that the transient suppression of the neocortical epileptic activity with CMS may be primarily due to extra-synaptic tonic inhibition in the thalamocortical relay cells.
These findings contribute to a deeper understanding of high-frequency CMS in epilepsy and pave the way for further research and optimization of this therapeutic approach.
Related Results
Portrait of Epilepsy on the Canvas of Global Health
Portrait of Epilepsy on the Canvas of Global Health
Global, regional, and national burden of epilepsy, 1990-2021: a systematic analysis for the Global Burden of Disease Study 2021.
GBD Epilepsy Collabora...
Motor‐associated thalamic nuclei are reduced in juvenile myoclonic epilepsy
Motor‐associated thalamic nuclei are reduced in juvenile myoclonic epilepsy
AbstractObjectiveThis study was undertaken to determine the thalamic nuclei that are different between juvenile myoclonic epilepsy (JME) and healthy controls from the Juvenile Myoc...
A study of the clearness rate of fetal Sylvian fissure shown on different sections by prenatal ultrasound
A study of the clearness rate of fetal Sylvian fissure shown on different sections by prenatal ultrasound
AbstractObjectiveTo compare the clearness rate of fetal Sylvian fissure revealed by prenatal ultrasonography on trans-cerebellar section and trans-thalamic section, and to provide ...
A distributed neocortical action map associated with reach-to-grasp
A distributed neocortical action map associated with reach-to-grasp
ABSTRACTReach-to-Grasp (RtG) is known to be dependent upon neocortical circuits and extensive research has provided insights into how selected neocortical areas contribute to contr...
River Epilepsy—A Preventable Form of Epilepsy
River Epilepsy—A Preventable Form of Epilepsy
Effect of Onchocerciasis Elimination Measures on the Incidence of Epilepsy in Maridi, South Sudan: A 3-Year Longitudinal, Prospective, Population-Based Study.
...
The relationship between zinc and epilepsy
The relationship between zinc and epilepsy
Abstract
Background
Previous studies have indicated a potential relationship between zinc and epilepsy. The aim of this study is to investigate the causal relationship bet...
The pattern of knowledge, attitude, and practice of epilepsy in Bengali-speaking literate epilepsy patients in Kolkata
The pattern of knowledge, attitude, and practice of epilepsy in Bengali-speaking literate epilepsy patients in Kolkata
Background: A good knowledge, attitude, and practice (KAP) are lacking among epilepsy patients and the general public (even literates) across the world. As a result, a treatment ga...
EPD Electronic Pathogen Detection v1
EPD Electronic Pathogen Detection v1
Electronic pathogen detection (EPD) is a non - invasive, rapid, affordable, point- of- care test, for Covid 19 resulting from infection with SARS-CoV-2 virus. EPD scanning techno...

