Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Manufacturing of All Inkjet-Printed Organic Photovoltaic Cell Arrays and Evaluating Their Suitability for Flexible Electronics

View through CrossRef
The generation of electrical energy depending on renewable sources is rapidly growing and gaining serious attention due to its green sustainability. With fewer adverse impacts on the environment, the sun is considered as a nearly infinite source of renewable energy in the production of electrical energy using photovoltaic devices. On the other end, organic photovoltaic (OPV) is the class of solar cells that offers several advantages such as mechanical flexibility, solution processability, environmental friendliness, and being lightweight. In this research, we demonstrate the manufacturing route for printed OPV device arrays based on conventional architecture and using inkjet printing technology over an industrial platform. Inkjet technology is presently considered to be one of the most matured digital manufacturing technologies because it offers inherent additive nature and last stage customization flexibility (if the main goal is to obtain custom design devices). In this research paper, commercially available electronically functional inks were carefully selected and then implemented to show the importance of compatibility between OPV material stacks and the device architecture. One of the main outcomes of this work is that the manufacturing of the OPV devices was accomplished using inkjet technology in massive numbers ranging up to 1500 containing different device sizes, all of which were deposited on a flexible polymeric film and under normal atmospheric conditions. In this investigation, it was found that with a set of correct functional materials and architecture, a manufacturing yield of more than 85% could be accomplished, which would reflect high manufacturing repeatability, deposition accuracy, and processability of the inkjet technology.
Title: Manufacturing of All Inkjet-Printed Organic Photovoltaic Cell Arrays and Evaluating Their Suitability for Flexible Electronics
Description:
The generation of electrical energy depending on renewable sources is rapidly growing and gaining serious attention due to its green sustainability.
With fewer adverse impacts on the environment, the sun is considered as a nearly infinite source of renewable energy in the production of electrical energy using photovoltaic devices.
On the other end, organic photovoltaic (OPV) is the class of solar cells that offers several advantages such as mechanical flexibility, solution processability, environmental friendliness, and being lightweight.
In this research, we demonstrate the manufacturing route for printed OPV device arrays based on conventional architecture and using inkjet printing technology over an industrial platform.
Inkjet technology is presently considered to be one of the most matured digital manufacturing technologies because it offers inherent additive nature and last stage customization flexibility (if the main goal is to obtain custom design devices).
In this research paper, commercially available electronically functional inks were carefully selected and then implemented to show the importance of compatibility between OPV material stacks and the device architecture.
One of the main outcomes of this work is that the manufacturing of the OPV devices was accomplished using inkjet technology in massive numbers ranging up to 1500 containing different device sizes, all of which were deposited on a flexible polymeric film and under normal atmospheric conditions.
In this investigation, it was found that with a set of correct functional materials and architecture, a manufacturing yield of more than 85% could be accomplished, which would reflect high manufacturing repeatability, deposition accuracy, and processability of the inkjet technology.

Related Results

MARS-seq2.0: an experimental and analytical pipeline for indexed sorting combined with single-cell RNA sequencing v1
MARS-seq2.0: an experimental and analytical pipeline for indexed sorting combined with single-cell RNA sequencing v1
Human tissues comprise trillions of cells that populate a complex space of molecular phenotypes and functions and that vary in abundance by 4–9 orders of magnitude. Relying solely ...
Site suitability analysis of Solar PV Power generation in South Gonder, Amhara Region
Site suitability analysis of Solar PV Power generation in South Gonder, Amhara Region
Abstract Currently, Ethiopian government looked towards renewable energy resources to generate electrical power for the country needs. 85% of the total population of the co...
E-Press and Oppress
E-Press and Oppress
From elephants to ABBA fans, silicon to hormone, the following discussion uses a new research method to look at printed text, motion pictures and a te...
Quantitative Research on China’s PV Industry Policy based on PMC-index Model
Quantitative Research on China’s PV Industry Policy based on PMC-index Model
Photovoltaic industry is an important new energy industry, and photovoltaic industry policy is an important part of the photovoltaic industry. To analyze the structure and evolutio...
Self-Standing 3D Thin Film Cathodes for Micobatteries
Self-Standing 3D Thin Film Cathodes for Micobatteries
While the microelectronic industry is advancing at a rapid pace with smaller and smaller devices, the implementation of microelectro-mechanical systems (MEMS) on the market strongl...
Schiff base flexible organic crystals toward multifunctional applications
Schiff base flexible organic crystals toward multifunctional applications
AbstractThe emergence of flexible organic crystals changed the perception of molecular crystals that were regarded as brittle entities over a long period of time, and sparked a gre...
Optimization of Var-Voltage Regulation Control Strategy for Grid-Connected Inverter of Photovoltaic Power
Optimization of Var-Voltage Regulation Control Strategy for Grid-Connected Inverter of Photovoltaic Power
Abstract With the continuous increase of installed capacity of large photovoltaic power stations, the light intensity and temperature changes of photovoltaic power g...

Back to Top