Javascript must be enabled to continue!
Fuzzy Spatial Data Types for Spatial Uncertainty Management in Databases
View through CrossRef
Spatial database systems and geographical information systems are currently only able to support geographical applications that deal with crisp spatial objects, that is, objects whose extent, shape, and boundary are precisely determined. Examples are land parcels, school districts, and state territories. However, many new, emerging applications are interested in modeling and processing geographic data that are inherently characterized by spatial vagueness or spatial indeterminacy. This requires novel concepts due to the lack of adequate approaches and systems. In this chapter, we focus on an important kind of spatial vagueness called spatial fuzziness. Spatial fuzziness captures the property of many spatial objects in reality that do not have sharp boundaries and interiors or whose boundaries and interiors cannot be precisely determined. We will designate this kind of entities as fuzzy spatial objects. Examples are polluted areas, temperature zones, and lakes. We propose an abstract, formal, and conceptual model of so-called fuzzy spatial data types (that is, a fuzzy spatial algebra) introducing fuzzy points, fuzzy lines, and fuzzy regions in the two-dimensional Euclidean space. This chapter provides a definition of their structure and semantics, which is supposed to serve as a specification of their implementation. Furthermore, we introduce fuzzy spatial set operations like fuzzy union, fuzzy intersection, and fuzzy difference, as well as fuzzy topological predicates as they are useful in fuzzy spatial joins and fuzzy spatial selections. We also sketch implementation strategies for the whole type system and show their integration into databases. An outlook on future research challenges rounds out the chapter.
Title: Fuzzy Spatial Data Types for Spatial Uncertainty Management in Databases
Description:
Spatial database systems and geographical information systems are currently only able to support geographical applications that deal with crisp spatial objects, that is, objects whose extent, shape, and boundary are precisely determined.
Examples are land parcels, school districts, and state territories.
However, many new, emerging applications are interested in modeling and processing geographic data that are inherently characterized by spatial vagueness or spatial indeterminacy.
This requires novel concepts due to the lack of adequate approaches and systems.
In this chapter, we focus on an important kind of spatial vagueness called spatial fuzziness.
Spatial fuzziness captures the property of many spatial objects in reality that do not have sharp boundaries and interiors or whose boundaries and interiors cannot be precisely determined.
We will designate this kind of entities as fuzzy spatial objects.
Examples are polluted areas, temperature zones, and lakes.
We propose an abstract, formal, and conceptual model of so-called fuzzy spatial data types (that is, a fuzzy spatial algebra) introducing fuzzy points, fuzzy lines, and fuzzy regions in the two-dimensional Euclidean space.
This chapter provides a definition of their structure and semantics, which is supposed to serve as a specification of their implementation.
Furthermore, we introduce fuzzy spatial set operations like fuzzy union, fuzzy intersection, and fuzzy difference, as well as fuzzy topological predicates as they are useful in fuzzy spatial joins and fuzzy spatial selections.
We also sketch implementation strategies for the whole type system and show their integration into databases.
An outlook on future research challenges rounds out the chapter.
Related Results
Konstruksi Sistem Inferensi Fuzzy Menggunakan Subtractive Fuzzy C-Means pada Data Parkinson
Konstruksi Sistem Inferensi Fuzzy Menggunakan Subtractive Fuzzy C-Means pada Data Parkinson
Abstract. Fuzzy Inference System requires several stages to get the output, 1) formation of fuzzy sets, 2) formation of rules, 3) application of implication functions, 4) compositi...
Reserves Uncertainty Calculation Accounting for Parameter Uncertainty
Reserves Uncertainty Calculation Accounting for Parameter Uncertainty
Abstract
An important goal of geostatistical modeling is to assess output uncertainty after processing realizations through a transfer function, in particular, to...
Generated Fuzzy Quasi-ideals in Ternary Semigroups
Generated Fuzzy Quasi-ideals in Ternary Semigroups
Here in this paper, we provide characterizations of fuzzy quasi-ideal in terms of level and strong level subsets. Along with it, we provide expression for the generated fuzzy quasi...
New Approaches of Generalised Fuzzy Soft sets on fuzzy Codes and Its Properties on Decision-Makings
New Approaches of Generalised Fuzzy Soft sets on fuzzy Codes and Its Properties on Decision-Makings
Background Several scholars defined the concepts of fuzzy soft set theory and their application on decision-making problem. Based on this concept, researchers defined the generalis...
Fuzzy Chaotic Neural Networks
Fuzzy Chaotic Neural Networks
An understanding of the human brain’s local function has improved in recent years. But the cognition of human brain’s working process as a whole is still obscure. Both fuzzy logic ...
Perbaikan Kualitas Citra Menggunakan Metode Fuzzy Type-2
Perbaikan Kualitas Citra Menggunakan Metode Fuzzy Type-2
Image enhancement is applied to an image that has low contrast. Histogram Equalization (HE) is a general method used to improve the quality of an image. However, its drawback is f...
FUZZY RINGS AND ITS PROPERTIES
FUZZY RINGS AND ITS PROPERTIES
Abstract One of algebraic structure that involves a binary operation is a group that is defined an un empty set (classical) with an associative binary operation, it has identity e...
Fuzzy Semantic Models of Fuzzy Concepts in Fuzzy Systems
Fuzzy Semantic Models of Fuzzy Concepts in Fuzzy Systems
The fuzzy properties of language semantics are a central problem towards machine-enabled natural language processing in cognitive linguistics, fuzzy systems, and computational ling...


