Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Effect of Carbonate to Phosphate Molar Ratios on the Physico-Chemical Properties of Carbonated Hydroxyapatite Nanopowder

View through CrossRef
The aim of this study was to incorporate carbonate ions (CO3 2–) into the hydroxyapatite (HA) crystal structure followed by investigation on the effect of different carbonate to phosphate (CO3 2–/PO4 3–) ratios on the phase purity, crystal structure as well as CO3 2– content present in the apatite structure. CO3 2– substitution has been proposed to enhance the performance of HA-based material, particularly on the physico-chemical properties. Three different compositions of carbonated hydroxyapatite (CHA) powder with different CO3 2–/ PO4 3– ratios (namely, CHA 1:1, CHA 2:1 and CHA 4:1) were chemically synthesised by nanoemulsion method at 37°C and characterised for their physico-chemical properties. Results demonstrated that all as-synthesised powders formed single phase B-type CHA without any additional phases. Interestingly, an increasing amount of CO3 2– substituted into the apatite structure gives rise to the formation of CHA structure with a variation on their cell parameters and the degree of crystallinity. An increase in the CO3 2–/ PO4 3– ratio was also found to lead a higher amount of CO3 2– content present in the as-synthesised powder (in a range of 4 wt % to 10 wt %), which is comparable to the CO3 2– content found in the human bone mineral.
Title: Effect of Carbonate to Phosphate Molar Ratios on the Physico-Chemical Properties of Carbonated Hydroxyapatite Nanopowder
Description:
The aim of this study was to incorporate carbonate ions (CO3 2–) into the hydroxyapatite (HA) crystal structure followed by investigation on the effect of different carbonate to phosphate (CO3 2–/PO4 3–) ratios on the phase purity, crystal structure as well as CO3 2– content present in the apatite structure.
CO3 2– substitution has been proposed to enhance the performance of HA-based material, particularly on the physico-chemical properties.
Three different compositions of carbonated hydroxyapatite (CHA) powder with different CO3 2–/ PO4 3– ratios (namely, CHA 1:1, CHA 2:1 and CHA 4:1) were chemically synthesised by nanoemulsion method at 37°C and characterised for their physico-chemical properties.
Results demonstrated that all as-synthesised powders formed single phase B-type CHA without any additional phases.
Interestingly, an increasing amount of CO3 2– substituted into the apatite structure gives rise to the formation of CHA structure with a variation on their cell parameters and the degree of crystallinity.
An increase in the CO3 2–/ PO4 3– ratio was also found to lead a higher amount of CO3 2– content present in the as-synthesised powder (in a range of 4 wt % to 10 wt %), which is comparable to the CO3 2– content found in the human bone mineral.

Related Results

Enhanced osteoconductivity of sodium‐substituted hydroxyapatite by system instability
Enhanced osteoconductivity of sodium‐substituted hydroxyapatite by system instability
AbstractThe effect of substituting sodium for calcium on enhanced osteoconductivity of hydroxyapatite was newly investigated. Sodium‐substituted hydroxyapatite was synthesized by r...
Novel phosphate-based cements for clinical applications
Novel phosphate-based cements for clinical applications
This Thesis aims at the development of two novel families of inorganic phosphate cements with suitable characteristics for clinical applications in hard tissue regeneration or repl...
Synthesis and Investigation into Apatite-forming Ability of Hydroxyapatite/Chitosan-based Scaffold
Synthesis and Investigation into Apatite-forming Ability of Hydroxyapatite/Chitosan-based Scaffold
In this study, porous scaffolds were fabricated using inorganic material-hydroxyapatite and chitosan for bone-tissue engineering. The combination of hydroxyapatite and chitosan may...
Glutathione induces ArabidopsisPHT1;5gene via WRKY75 transcription factor to regulate phosphate homeostasis
Glutathione induces ArabidopsisPHT1;5gene via WRKY75 transcription factor to regulate phosphate homeostasis
AbstractPhosphorus is a macronutrient that regulates a wide range of physiological processes, including plant growth and development. The scarcity of bioavailable phosphate is ofte...
Accelerated shelf‐life study on protein‐enriched carbonated fruit drink
Accelerated shelf‐life study on protein‐enriched carbonated fruit drink
AbstractCarbonated beverages are the most popular beverages due to its thirst quenching, fizziness, and refreshing nature. Carbonated drink covers almost half of the total soft dri...
Removal of Cadmium Ions from Aqueous Solution by Silicate‐incorporated Hydroxyapatite
Removal of Cadmium Ions from Aqueous Solution by Silicate‐incorporated Hydroxyapatite
Abstract: This article reports a preliminary research on silicate‐incorporated hydroxyapatite as a new environmental mineral used to remove cadmium ions from aqueous solutions. The...
Effect of Sulfuric Acid Treatment and Calcination on Commercial Zirconia Nanopowder
Effect of Sulfuric Acid Treatment and Calcination on Commercial Zirconia Nanopowder
The modification of commercial zirconia nanopowder by sulfuric acid and heat treatment was conducted. The aim of this present research was to obtain a stable modified zirconia nano...

Back to Top