Javascript must be enabled to continue!
Proton transport in water is doubly gated by sequential hydrogen-bond exchanges
View through CrossRef
The transport of excess protons in water is central to acid-base chemistry, biochemistry, and energy production. However, elucidating its mechanism has been challenging. Recent nonlinear vibrational spectroscopy experiments could not be explained by existing models. Here, we combine neural network-based molecular dynamics simulations considering nuclear quantum effects for all atoms and vibrational spectroscopy calculations to determine the proton transport mechanism. Our simulations reveal the equilibrium between two stable proton-localized structures with distinct Eigen-like and Zundel-like hydrogen-bond motifs. Proton transport follows a three-step mechanism gated by two successive hydrogen-bond exchanges: the first reduces the proton-acceptor water coordination, leading to proton transfer, and the second, the rate-limiting step, prevents rapid back-transfer by increasing the proton-donor coordination. This sequential mechanism is consistent with experimental characterizations of proton diffusion, explaining the low activation energy and the prolonged intermediate lifetimes in vibrational spectroscopy. These results are crucial for understanding proton dynamics in biochemical and technological systems.
Title: Proton transport in water is doubly gated by sequential hydrogen-bond exchanges
Description:
The transport of excess protons in water is central to acid-base chemistry, biochemistry, and energy production.
However, elucidating its mechanism has been challenging.
Recent nonlinear vibrational spectroscopy experiments could not be explained by existing models.
Here, we combine neural network-based molecular dynamics simulations considering nuclear quantum effects for all atoms and vibrational spectroscopy calculations to determine the proton transport mechanism.
Our simulations reveal the equilibrium between two stable proton-localized structures with distinct Eigen-like and Zundel-like hydrogen-bond motifs.
Proton transport follows a three-step mechanism gated by two successive hydrogen-bond exchanges: the first reduces the proton-acceptor water coordination, leading to proton transfer, and the second, the rate-limiting step, prevents rapid back-transfer by increasing the proton-donor coordination.
This sequential mechanism is consistent with experimental characterizations of proton diffusion, explaining the low activation energy and the prolonged intermediate lifetimes in vibrational spectroscopy.
These results are crucial for understanding proton dynamics in biochemical and technological systems.
Related Results
Proton transport in water is doubly gated by sequential hydrogen-bond exchanges
Proton transport in water is doubly gated by sequential hydrogen-bond exchanges
Abstract
The transport of excess protons in water is central to acid-base chemistry, biochemistry, and energy production. However, elucidating its mechanism has been challe...
Use of Formation Water and Associated Gases and their Simultaneous Utilization for Obtaining Microelement Concentrates Fresh Water and Drinking Water
Use of Formation Water and Associated Gases and their Simultaneous Utilization for Obtaining Microelement Concentrates Fresh Water and Drinking Water
Abstract Purpose: The invention relates to the oil industry, inorganic chemistry, in particular, to the methods of complex processing of formation water, using flare gas of oil and...
Improvement of Seismic Performance of Ordinary Reinforced Partially Grouted Concrete Masonry Shear Walls
Improvement of Seismic Performance of Ordinary Reinforced Partially Grouted Concrete Masonry Shear Walls
Reinforced masonry constitutes about 10% of all low-rise construction in the US. Most of these structures are commercial and school buildings. It may also be used for multi-story h...
Stability Modeling and Analysis of Grid Connected Doubly Fed Wind Energy Generation Based on Small Signal Model
Stability Modeling and Analysis of Grid Connected Doubly Fed Wind Energy Generation Based on Small Signal Model
Stable wind power generation can ensure the quality of power transmitted by the grid. The application of large-scale grid-connected wind power systems will induce problems such as ...
SYSTEMATIZATION OF THE REGULATORY FRAMEWORK OF ENSURING THE WATER TRANSPORT COMPETITIVENESS IN UKRAINE
SYSTEMATIZATION OF THE REGULATORY FRAMEWORK OF ENSURING THE WATER TRANSPORT COMPETITIVENESS IN UKRAINE
Topicality. Business entities in the field of water transport can gain competitive advantages and ensure their competitiveness through the introduction of innovations into the proc...
2 mils Au wire interchip wedge bond cratering study
2 mils Au wire interchip wedge bond cratering study
Au wire thermosonic wedge bonding is applied for die to die interconnect on accelerometer device. With the fragile bond pad structure of MEMS device, bond pad cratering or bond pad...
GUIDING PRINCIPLES OF PRIORITIZING TASKS FOR DEVELOPING UKRAINE'S WATER TRANSPORT
GUIDING PRINCIPLES OF PRIORITIZING TASKS FOR DEVELOPING UKRAINE'S WATER TRANSPORT
Topicality. Water transport is of crucial importance for the economic prosperity and national security of Ukraine. Most sectors of the economy depend on water transport and its inf...
Unraveling the mechanism of proton translocation in the extracellular half-channel of bacteriorhodopsin
Unraveling the mechanism of proton translocation in the extracellular half-channel of bacteriorhodopsin
AbstractBacteriorhodopsin, a light activated protein that creates a proton gradient in halobacteria, has long served as a simple model of proton pumps. Within bacteriorhodopsin, se...

