Javascript must be enabled to continue!
Flood Forecasting Method and Application Based on Informer Model
View through CrossRef
Flood forecasting helps anticipate floods and evacuate people, but due to the access of a large number of data acquisition devices, the explosive growth of multidimensional data and the increasingly demanding prediction accuracy, classical parameter models, and traditional machine learning algorithms are unable to meet the high efficiency and high precision requirements of prediction tasks. In recent years, deep learning algorithms represented by convolutional neural networks, recurrent neural networks and Informer models have achieved fruitful results in time series prediction tasks. The Informer model is used to predict the flood flow of the reservoir. At the same time, the prediction results are compared with the prediction results of the traditional method and the LSTM model, and how to apply the Informer model in the field of flood prediction to improve the accuracy of flood prediction is studied. The data of 28 floods in the Wan’an Reservoir control basin from May 2014 to June 2020 were used, with areal rainfall in five subzones and outflow from two reservoirs as inputs and flood processes with different sequence lengths as outputs. The results show that the Informer model has good accuracy and applicability in flood forecasting. In the flood forecasting with a sequence length of 4, 5 and 6, Informer has higher prediction accuracy, and the prediction accuracy is better than other models under the same sequence length, but the prediction accuracy will decline to a certain extent with the increase in sequence length. The Informer model stably predicts the flood peak better, and its average flood peak difference and average maximum flood peak difference are the smallest. As the length of the sequence increases, the number of fields with a maximum flood peak difference less than 15% increases, and the maximum flood peak difference decreases. Therefore, the Informer model can be used as one of the better flood forecasting methods, and it provides a new forecasting method and scientific decision-making basis for reservoir flood control.
Title: Flood Forecasting Method and Application Based on Informer Model
Description:
Flood forecasting helps anticipate floods and evacuate people, but due to the access of a large number of data acquisition devices, the explosive growth of multidimensional data and the increasingly demanding prediction accuracy, classical parameter models, and traditional machine learning algorithms are unable to meet the high efficiency and high precision requirements of prediction tasks.
In recent years, deep learning algorithms represented by convolutional neural networks, recurrent neural networks and Informer models have achieved fruitful results in time series prediction tasks.
The Informer model is used to predict the flood flow of the reservoir.
At the same time, the prediction results are compared with the prediction results of the traditional method and the LSTM model, and how to apply the Informer model in the field of flood prediction to improve the accuracy of flood prediction is studied.
The data of 28 floods in the Wan’an Reservoir control basin from May 2014 to June 2020 were used, with areal rainfall in five subzones and outflow from two reservoirs as inputs and flood processes with different sequence lengths as outputs.
The results show that the Informer model has good accuracy and applicability in flood forecasting.
In the flood forecasting with a sequence length of 4, 5 and 6, Informer has higher prediction accuracy, and the prediction accuracy is better than other models under the same sequence length, but the prediction accuracy will decline to a certain extent with the increase in sequence length.
The Informer model stably predicts the flood peak better, and its average flood peak difference and average maximum flood peak difference are the smallest.
As the length of the sequence increases, the number of fields with a maximum flood peak difference less than 15% increases, and the maximum flood peak difference decreases.
Therefore, the Informer model can be used as one of the better flood forecasting methods, and it provides a new forecasting method and scientific decision-making basis for reservoir flood control.
Related Results
Flood Forecasting Method and Application based on Informer Model
Flood Forecasting Method and Application based on Informer Model
Flood forecasting helps anticipate floods and evacuate people, but due to the access of a large number of iot data acquisition devices, the explosive growth of multidimensional dat...
Establishment and Application of the Multi-Peak Forecasting Model
Establishment and Application of the Multi-Peak Forecasting Model
Abstract
After the development of the oil field, it is an important task to predict the production and the recoverable reserve opportunely by the production data....
Assessment of Flood Risk Analysis in Selangor
Assessment of Flood Risk Analysis in Selangor
Flood events occur every year especially during the monsoon season. Although its consequences are not as disastrous as other natural disasters such as earthquakes and tornado storm...
Real-Time Flood Classification Forecasting Based on k-Means++ Clustering and Neural Network
Real-Time Flood Classification Forecasting Based on k-Means++ Clustering and Neural Network
Abstract
Floods are one of the most dangerous disasters that affect human beings. Timely and accurate flood forecasting can effectively reduce losses to human life and prop...
Analyzing the Evolution of Droughts and Floods During the Flood Season in the Yangtze River Basin and the Three Gorges Reservoir Area from 1470 to 2022
Analyzing the Evolution of Droughts and Floods During the Flood Season in the Yangtze River Basin and the Three Gorges Reservoir Area from 1470 to 2022
Abstract
As an important economic region in China, The Yangtze River economic belt encountered a historically rare successive drought in 2022. Here even appeared a phenomen...
Advancing Flood Management Strategies: A Review of Agent-Based Models in Flood Risk Assessment
Advancing Flood Management Strategies: A Review of Agent-Based Models in Flood Risk Assessment
Flooding is one of the most destructive natural disasters worldwide, causing significant socio-economic losses, disruption of critical infrastructure, and loss of lives. The increa...
Maximizing the usefulness of flood risk assessment for the River Vistula in Warsaw
Maximizing the usefulness of flood risk assessment for the River Vistula in Warsaw
Abstract. The derivation of flood risk maps requires an estimation of maximum inundation extent for a flood with a given return period, e.g. 100 or 500 yr. The results of numerical...
Lithostratigraphy of the southeastern part of the Ethiopian flood basalt province
Lithostratigraphy of the southeastern part of the Ethiopian flood basalt province
Abstract
Fully preserved continental flood basalt stratigraphy provides a perfect window to comprehend the temporal evolution and geological history of plume-related volcan...


