Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Combining Ability of Sixteen USA Maize Inbred Lines and Their Outbreeding Prospects in China

View through CrossRef
In China, there is an increasing need for greater genetic diversity in maize (Zea mays L.) germplasm and hybrids appropriate for mechanical harvesting. In order to test and distinguish American maize inbred lines with exceptional combining ability, four Chinese maize inbred lines (Chang7-2, Zheng 58, four-144 and four-287) were used to judge the combining ability and heterosis of 16 USA inbred lines by a NCII genetic mating method. The results showed that among the American inbred lines, 6M502A, LH208, NL001, LH212Ht, PHW51, FBLA and LH181 expressed good GCA for yield characteristics; while RS710, PHP76, FBLA, and PHJ89 showed excellent GCA for machine harvesting characteristics. Five hybrids (NL001 × Chang7-2, LH212Ht × Chang7-2, FBLA × four-144, LH181 × four-287, PHK93 × four-287) had better SCA values for yield characteristics, at 1.69, 1.07, 1.48, 1.84 and 1.05, respectively; while NL001 × Chang 7-2, 6M502A × Chang7-2, LH212Ht × Chang7-2, LH181 × four-287, PHW51 × Chang7-2 had better TCA values for yield characteristics, at 3.03, 2.80, 2.41, 2.19 and 1.91, respectively; NL001 × Chang7-2, 6M502A × Chang7-2, LH212Ht × Chang7-2, LH181 × four-287, PHW51 × Chang7-2 showed excellent Control Heterosis values, with 21.48%, 19.64%, 15.93%, 14.05% and 11.60% increases, respectively, compared to the check and potential for future utilization in Inner Mongolian corn production.
Title: Combining Ability of Sixteen USA Maize Inbred Lines and Their Outbreeding Prospects in China
Description:
In China, there is an increasing need for greater genetic diversity in maize (Zea mays L.
) germplasm and hybrids appropriate for mechanical harvesting.
In order to test and distinguish American maize inbred lines with exceptional combining ability, four Chinese maize inbred lines (Chang7-2, Zheng 58, four-144 and four-287) were used to judge the combining ability and heterosis of 16 USA inbred lines by a NCII genetic mating method.
The results showed that among the American inbred lines, 6M502A, LH208, NL001, LH212Ht, PHW51, FBLA and LH181 expressed good GCA for yield characteristics; while RS710, PHP76, FBLA, and PHJ89 showed excellent GCA for machine harvesting characteristics.
Five hybrids (NL001 × Chang7-2, LH212Ht × Chang7-2, FBLA × four-144, LH181 × four-287, PHK93 × four-287) had better SCA values for yield characteristics, at 1.
69, 1.
07, 1.
48, 1.
84 and 1.
05, respectively; while NL001 × Chang 7-2, 6M502A × Chang7-2, LH212Ht × Chang7-2, LH181 × four-287, PHW51 × Chang7-2 had better TCA values for yield characteristics, at 3.
03, 2.
80, 2.
41, 2.
19 and 1.
91, respectively; NL001 × Chang7-2, 6M502A × Chang7-2, LH212Ht × Chang7-2, LH181 × four-287, PHW51 × Chang7-2 showed excellent Control Heterosis values, with 21.
48%, 19.
64%, 15.
93%, 14.
05% and 11.
60% increases, respectively, compared to the check and potential for future utilization in Inner Mongolian corn production.

Related Results

Evaluation of Drought Tolerance in Maize Inbred Lines Selected from the Shaan A Group and Shaan B Group
Evaluation of Drought Tolerance in Maize Inbred Lines Selected from the Shaan A Group and Shaan B Group
Drought is one of the most prevailing abiotic stresses affecting the growth, development, and productivity of maize. Knowledge of drought tolerance could help in maize improvement....
Diallel Analysis of Maize (Zea mays L.) Inbred Lines for Yield and Yield Components Under Acidic Soil Conditions in Western Ethiopia
Diallel Analysis of Maize (Zea mays L.) Inbred Lines for Yield and Yield Components Under Acidic Soil Conditions in Western Ethiopia
Abstract Soil acidity, particularly due to aluminum toxicity, limits maize production in Western Ethiopia, emphasizing the need for acid-tolerant maize varieties. This stud...
Improvement of Provitamin A in Maize Varieties Using Arbuscular Mycorrhizal Fungus, Glomus clarum
Improvement of Provitamin A in Maize Varieties Using Arbuscular Mycorrhizal Fungus, Glomus clarum
Arbuscular mycorrhizal fungus (AMF, Glomus clarum) has been used widely as a bio-amendment and bio-control agent in several biotechnological studies. In this study, biofortificatio...
Effects of maize-soybean rotation and plant residue return on maize yield and soil microbial communities
Effects of maize-soybean rotation and plant residue return on maize yield and soil microbial communities
Abstract Background and aims The practice of returning corn stalks back to fields is widely implemented in maize cropping systems, but its impacts on maize yield is incons...
Legume based Profitable Intercropping System for Management of Fall Armyworm in Maize
Legume based Profitable Intercropping System for Management of Fall Armyworm in Maize
Background: Incidence of fall armyworm in maize has been reported at a severe level since 2018 resulting in low yield and in extreme cases complete failure of the crop. In view of ...
Recognition of Maize Tassels Based on Improved YOLOv8 and Unmanned Aerial Vehicles RGB Images
Recognition of Maize Tassels Based on Improved YOLOv8 and Unmanned Aerial Vehicles RGB Images
The tasseling stage of maize, as a critical period of maize cultivation, is essential for predicting maize yield and understanding the normal condition of maize growth. However, th...
Maize Disease Recognition Based On Image Enhancement And OSCRNet
Maize Disease Recognition Based On Image Enhancement And OSCRNet
Abstract Background: Under natural light irradiation, there are significant challenges in the identification of maize leaf diseases because of the difficulties in extractin...

Back to Top