Javascript must be enabled to continue!
OLAP Visualization
View through CrossRef
The problem of efficiently visualizing multidimensional data sets produced by scientific and statistical tasks/ processes is becoming increasingly challenging, and is attracting the attention of a wide multidisciplinary community of researchers and practitioners. Basically, this problem consists in visualizing multidimensional data sets by capturing the dimensionality of data, which is the most difficult aspect to be considered. Human analysts interacting with high-dimensional data often experience disorientation and cognitive overload. Analysis of high- dimensional data is a challenge encountered in a wide set of real-life applications such as (i) biological databases storing massive gene and protein data sets, (ii) real-time monitoring systems accumulating data sets produced by multiple, multi-rate streaming sources, (iii) advanced Business Intelligence (BI) systems collecting business data for decision making purposes etc. Traditional DBMS front-end tools, which are usually tuple-bag-oriented, are completely inadequate to fulfill the requirements posed by an interactive exploration of high-dimensional data sets due to two major reasons: (i) DBMS implement the OLTP paradigm, which is optimized for transaction processing and deliberately neglects the dimensionality of data; (ii) DBMS operators are very poor and offer nothing beyond the capability of conventional SQL statements, what makes such tools very inefficient with respect to the goal of visualizing and, above all, interacting with multidimensional data sets embedding a large number of dimensions. Despite the above-highlighted practical relevance of the problem of visualizing multidimensional data sets, the literature in this field is rather scarce, due to the fact that, for many years, this problem has been of relevance for life science research communities only, and interaction of the latter with the computer science research community has been insufficient. Following the enormous growth of scientific disciplines like Bio-Informatics, this problem has then become a fundamental field in the computer science academic as well as industrial research. At the same time, a number of proposals dealing with the multidimensional data visualization problem appeared in literature, with the amenity of stimulating novel and exciting application fields such as the visualization of Data Mining results generated by challenging techniques like clustering and association rule discovery. The above-mentioned issues are meant to facilitate understanding of the high relevance and attractiveness of the problem of visualizing multidimensional data sets at present and in the future, with challenging research findings accompanied by significant spin-offs in the Information Technology (IT) industrial field. A possible solution to tackle this problem is represented by well-known OLAP techniques (Codd et al., 1993; Chaudhuri & Dayal, 1997; Gray et al., 1997), focused on obtaining very efficient representations of multidimensional data sets, called data cubes, thus leading to the research field which is known in literature under the terms OLAP Visualization and Visual OLAP, which, in the remaining part of the article, are used interchangeably.
Title: OLAP Visualization
Description:
The problem of efficiently visualizing multidimensional data sets produced by scientific and statistical tasks/ processes is becoming increasingly challenging, and is attracting the attention of a wide multidisciplinary community of researchers and practitioners.
Basically, this problem consists in visualizing multidimensional data sets by capturing the dimensionality of data, which is the most difficult aspect to be considered.
Human analysts interacting with high-dimensional data often experience disorientation and cognitive overload.
Analysis of high- dimensional data is a challenge encountered in a wide set of real-life applications such as (i) biological databases storing massive gene and protein data sets, (ii) real-time monitoring systems accumulating data sets produced by multiple, multi-rate streaming sources, (iii) advanced Business Intelligence (BI) systems collecting business data for decision making purposes etc.
Traditional DBMS front-end tools, which are usually tuple-bag-oriented, are completely inadequate to fulfill the requirements posed by an interactive exploration of high-dimensional data sets due to two major reasons: (i) DBMS implement the OLTP paradigm, which is optimized for transaction processing and deliberately neglects the dimensionality of data; (ii) DBMS operators are very poor and offer nothing beyond the capability of conventional SQL statements, what makes such tools very inefficient with respect to the goal of visualizing and, above all, interacting with multidimensional data sets embedding a large number of dimensions.
Despite the above-highlighted practical relevance of the problem of visualizing multidimensional data sets, the literature in this field is rather scarce, due to the fact that, for many years, this problem has been of relevance for life science research communities only, and interaction of the latter with the computer science research community has been insufficient.
Following the enormous growth of scientific disciplines like Bio-Informatics, this problem has then become a fundamental field in the computer science academic as well as industrial research.
At the same time, a number of proposals dealing with the multidimensional data visualization problem appeared in literature, with the amenity of stimulating novel and exciting application fields such as the visualization of Data Mining results generated by challenging techniques like clustering and association rule discovery.
The above-mentioned issues are meant to facilitate understanding of the high relevance and attractiveness of the problem of visualizing multidimensional data sets at present and in the future, with challenging research findings accompanied by significant spin-offs in the Information Technology (IT) industrial field.
A possible solution to tackle this problem is represented by well-known OLAP techniques (Codd et al.
, 1993; Chaudhuri & Dayal, 1997; Gray et al.
, 1997), focused on obtaining very efficient representations of multidimensional data sets, called data cubes, thus leading to the research field which is known in literature under the terms OLAP Visualization and Visual OLAP, which, in the remaining part of the article, are used interchangeably.
Related Results
Querying data warehouses efficiently using the Bitmap Join Index OLAP Tool
Querying data warehouses efficiently using the Bitmap Join Index OLAP Tool
Data warehouse and OLAP are core aspects of business intelligence environments, since the former store integrated and time-variant data, while the latter enabl...
A Formal OLAP Algebra for NoSQL based Data Warehouses
A Formal OLAP Algebra for NoSQL based Data Warehouses
NoSQL solutions are started to be increasingly used in modern days’ Data Warehouses (DW). However, business analysts face challenges when performing On Line Analytical Processing (...
Information validity problems in OLAP systems
Information validity problems in OLAP systems
Abstract
Here, we deal with the notion of information validity and relevance, and data source reliability as applied to the design, development and information updating in ...
Computation of OLAP Cubes
Computation of OLAP Cubes
The focus of Online Analytical Processing (OLAP) is to provide a platform for analyzing data (e.g., sales data) with multiple dimensions (e.g., product, location, time) and multipl...
Visualization as infrastructure: China’s data visualization politics during COVID-19 and their implications for public health emergencies
Visualization as infrastructure: China’s data visualization politics during COVID-19 and their implications for public health emergencies
In this article, we analyze the rise of data visualization in social and political contexts. Against the background of the COVID-19 pandemic, we consider a case in Shenzhen, China,...
The effectiveness of using visualization tools and forms in distance learning
The effectiveness of using visualization tools and forms in distance learning
The purpose of the article is to comprehensively consider the concept of visualization, which is one of the main factors of effective learning of educational material, as well as t...
The Impact of Microsoft Mathematics Visualization on Students Academic Skills
The Impact of Microsoft Mathematics Visualization on Students Academic Skills
The purpose of this study is to examine whether there is a relationship between academic skills and Microsoft Mathematics Visualization as a result of the use of Microsoft Mathemat...
Visualization Grammar: A Phrase-Based Reservoir Information Visualization System
Visualization Grammar: A Phrase-Based Reservoir Information Visualization System
Abstract
Existing data query and visualization software capable of creating reservoir data visualizations are targeted at expert users and have a high learning curve...

