Javascript must be enabled to continue!
The Role of the Microenvironment and Cell Adhesion Molecules in Chronic Lymphocytic Leukemia
View through CrossRef
Chronic lymphocytic leukemia (CLL) is a B-cell malignancy whose progression largely depends on the lymph node and bone marrow microenvironment. Indeed, CLL cells actively proliferate in specific regions of these anatomical compartments, known as proliferation centers, while being quiescent in the blood stream. Hence, CLL cell adhesion and migration into these protective niches are critical for CLL pathophysiology. CLL cells are lodged in their microenvironment through a series of molecular interactions that are mediated by cellular adhesion molecules and their counter receptors. The importance of these adhesion molecules in the clinic is demonstrated by the correlation between the expression levels of some of them, in particular CD49d, and the prognostic likelihood. Furthermore, novel therapeutic agents, such as ibrutinib, impair the functions of these adhesion molecules, leading to an egress of CLL cells from the lymph nodes and bone marrow into the circulation together with an inhibition of homing into these survival niches, thereby preventing disease progression. Several adhesion molecules have been shown to participate in CLL adhesion and migration. Their importance also stems from the observation that they are involved in promoting, directly or indirectly, survival signals that sustain CLL proliferation and limit the efficacy of standard and novel chemotherapeutic drugs, a process known as cell adhesion-mediated drug resistance. In this respect, many studies have elucidated the molecular mechanisms underlying cell adhesion-mediated drug resistance, which have highlighted different signaling pathways that may represent potential therapeutic targets. Here, we review the role of the microenvironment and the adhesion molecules that have been shown to be important in CLL and their impact on transendothelial migration and cell-mediated drug resistance. We also discuss how novel therapeutic compounds modulate the function of this important class of molecules.
Title: The Role of the Microenvironment and Cell Adhesion Molecules in Chronic Lymphocytic Leukemia
Description:
Chronic lymphocytic leukemia (CLL) is a B-cell malignancy whose progression largely depends on the lymph node and bone marrow microenvironment.
Indeed, CLL cells actively proliferate in specific regions of these anatomical compartments, known as proliferation centers, while being quiescent in the blood stream.
Hence, CLL cell adhesion and migration into these protective niches are critical for CLL pathophysiology.
CLL cells are lodged in their microenvironment through a series of molecular interactions that are mediated by cellular adhesion molecules and their counter receptors.
The importance of these adhesion molecules in the clinic is demonstrated by the correlation between the expression levels of some of them, in particular CD49d, and the prognostic likelihood.
Furthermore, novel therapeutic agents, such as ibrutinib, impair the functions of these adhesion molecules, leading to an egress of CLL cells from the lymph nodes and bone marrow into the circulation together with an inhibition of homing into these survival niches, thereby preventing disease progression.
Several adhesion molecules have been shown to participate in CLL adhesion and migration.
Their importance also stems from the observation that they are involved in promoting, directly or indirectly, survival signals that sustain CLL proliferation and limit the efficacy of standard and novel chemotherapeutic drugs, a process known as cell adhesion-mediated drug resistance.
In this respect, many studies have elucidated the molecular mechanisms underlying cell adhesion-mediated drug resistance, which have highlighted different signaling pathways that may represent potential therapeutic targets.
Here, we review the role of the microenvironment and the adhesion molecules that have been shown to be important in CLL and their impact on transendothelial migration and cell-mediated drug resistance.
We also discuss how novel therapeutic compounds modulate the function of this important class of molecules.
Related Results
Are Cervical Ribs Indicators of Childhood Cancer? A Narrative Review
Are Cervical Ribs Indicators of Childhood Cancer? A Narrative Review
Abstract
A cervical rib (CR), also known as a supernumerary or extra rib, is an additional rib that forms above the first rib, resulting from the overgrowth of the transverse proce...
STAT3 Mutations in Large Granular Lymphocytic Leukemia
STAT3 Mutations in Large Granular Lymphocytic Leukemia
Abstract
Abstract 1606
Introduction:
Large granular lymphocytic leukemia (LGL leukemia) is a rare lymphoprolifera...
Myosin-IIa Is Required for Leukemia Cell Extravasation and Its Inhibition Reduces Leukemia Dissemination and Prolongs Survival in a Mouse Model of Acute Lymphoblastic Leukemia
Myosin-IIa Is Required for Leukemia Cell Extravasation and Its Inhibition Reduces Leukemia Dissemination and Prolongs Survival in a Mouse Model of Acute Lymphoblastic Leukemia
Abstract
Background: Leukemia affects approximately 45,000 people each year in the USA with more than 20,000 fatalities. Many leukemia patients experience initial re...
Cometary Physics Laboratory: spectrophotometric experiments
Cometary Physics Laboratory: spectrophotometric experiments
<p><strong><span dir="ltr" role="presentation">1. Introduction</span></strong&...
MARS-seq2.0: an experimental and analytical pipeline for indexed sorting combined with single-cell RNA sequencing v1
MARS-seq2.0: an experimental and analytical pipeline for indexed sorting combined with single-cell RNA sequencing v1
Human tissues comprise trillions of cells that populate a complex space of molecular phenotypes and functions and that vary in abundance by 4–9 orders of magnitude. Relying solely ...
Abstract 132: African polyherbal formulation alleviates benzene-induced leukemia in Wistar rats
Abstract 132: African polyherbal formulation alleviates benzene-induced leukemia in Wistar rats
Abstract
Background: Chemotherapy and radiotherapy are effective cancer treatment options but they are accompanied by serious side effects. Therefore, more effective...
CD5 and CD23 Positive Mantle Cell Lymphoma Detected by Flow Cytometry and Confirmed by FISH Study t(11;14).
CD5 and CD23 Positive Mantle Cell Lymphoma Detected by Flow Cytometry and Confirmed by FISH Study t(11;14).
Abstract
The differential diagnoses of CD5 positive B-cell lymphoproliferative disorders mainly include chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/...
A Systematic Literature Review on Leukemia Prediction Using Machine Learning
A Systematic Literature Review on Leukemia Prediction Using Machine Learning
Blood cancer is one of the most dangerous diseases in kids because it spreads throughout the body, damages healthy cells, and causes uncontrolled white blood cell growth. If it is ...

