Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Preparation of γ-Divinyl-3-Aminopropyltriethoxysilane Modified Lignin and Its Application in Flame Retardant Poly(lactic acid)

View through CrossRef
Lignin can be a candidate as a charring agent applied in halogen-free flame retardant polymers, and incorporation of silicon and nitrogen elements in lignin can benefit to enhancing its thermal stability and charring ability. In the present work, wheat straw alkali lignin (Lig) was modified to incorporate silicon and nitrogen elements by γ-divinyl-3-aminopropyltriethoxysilane, and the modified lignin (CLig) was combined with ammonium polyphosphate (APP) as intumescent flame retardant to be applied in poly(Lactic acid) (PLA). The flame retardancy, combustion behavior and thermal stability of PLA composites were studied by the limited oxygen index (LOI), vertical burning testing (UL-94), cone calorimetry testing (CCT) and thermogravimetric analysis (TGA), respectively. The results showed a significant synergistic effect between CLig and APP in flame retarded PLA (PLA/APP/CLig) occured, and the PLA/APP/CLig had better flame retardancy. CCT data analysis revealed that CLig and APP largely reduced the peak heat release rate (PHRR) and total heat release rate (THR) of PLA, indicating their effectiveness in decreasing the combustion of PLA. TGA results exhibited that APP and CLig improved the thermal stability of PLA at high temperature. The analysis of morphology and structure of residual char indicated that a continuous, compact and intumescent char layer on the material surface formed during firing, and had higher graphitization degree. Mechanical properties data showed that PLA/APP/CLig had higher tensile strength as well as elongation at break.
Title: Preparation of γ-Divinyl-3-Aminopropyltriethoxysilane Modified Lignin and Its Application in Flame Retardant Poly(lactic acid)
Description:
Lignin can be a candidate as a charring agent applied in halogen-free flame retardant polymers, and incorporation of silicon and nitrogen elements in lignin can benefit to enhancing its thermal stability and charring ability.
In the present work, wheat straw alkali lignin (Lig) was modified to incorporate silicon and nitrogen elements by γ-divinyl-3-aminopropyltriethoxysilane, and the modified lignin (CLig) was combined with ammonium polyphosphate (APP) as intumescent flame retardant to be applied in poly(Lactic acid) (PLA).
The flame retardancy, combustion behavior and thermal stability of PLA composites were studied by the limited oxygen index (LOI), vertical burning testing (UL-94), cone calorimetry testing (CCT) and thermogravimetric analysis (TGA), respectively.
The results showed a significant synergistic effect between CLig and APP in flame retarded PLA (PLA/APP/CLig) occured, and the PLA/APP/CLig had better flame retardancy.
CCT data analysis revealed that CLig and APP largely reduced the peak heat release rate (PHRR) and total heat release rate (THR) of PLA, indicating their effectiveness in decreasing the combustion of PLA.
TGA results exhibited that APP and CLig improved the thermal stability of PLA at high temperature.
The analysis of morphology and structure of residual char indicated that a continuous, compact and intumescent char layer on the material surface formed during firing, and had higher graphitization degree.
Mechanical properties data showed that PLA/APP/CLig had higher tensile strength as well as elongation at break.

Related Results

Experimental Evaluation of Lactic Acid for Matrix Acidizing of Carbonates
Experimental Evaluation of Lactic Acid for Matrix Acidizing of Carbonates
Summary To improve the efficiency of standard hydrochloric acid (HCl) stimulation treatments, many alternative acid systems have been developed to mitigate corrosion...
Surface Flame-Retardant Systems of Rigid Polyurethane Foams: An Overview
Surface Flame-Retardant Systems of Rigid Polyurethane Foams: An Overview
Rigid polyurethane foam (RPUF) is one of the best thermal insulation materials available, but its flammability makes it a potential fire hazard. Due to its porous nature, the large...
Study on flame retardant ABS
Study on flame retardant ABS
Flame-retardant ABS resin was prepared by adding fl ame retardant, toughening agent and dispersing silicone oilwith acrylonitrile-butadiene-styrene resin (ABS, grade 0215 A) as raw...
Effect of ozone treatment on softwood soda lignin-based water reducer performance for concrete
Effect of ozone treatment on softwood soda lignin-based water reducer performance for concrete
A lignin-based water reducer for concrete was prepared from softwood soda lignin. The soda lignin and the lignin-polyethylene glycol (PEG) derivative were modified with ozone to im...
Optimization of d-lactic acid production by terrilactibacillus laevilacticus SK5-6 and fermentation process scale up in 30 litre-fermentor
Optimization of d-lactic acid production by terrilactibacillus laevilacticus SK5-6 and fermentation process scale up in 30 litre-fermentor
PLA, which is one of biodegradable plastic stereocomplex is made by block polymerization of optically pure L- and D-lactic acid. With stereoblock structure, heat and mechanical pro...
Kandungan Asam Laktat Dan Total Bakteri Asam Laktat Silase Jerami Jagung (Zea mays. L) Dengan Penambahan Aditif Yang Berbeda
Kandungan Asam Laktat Dan Total Bakteri Asam Laktat Silase Jerami Jagung (Zea mays. L) Dengan Penambahan Aditif Yang Berbeda
ABSTRAK Penelitian ini bertujuan untuk mengetahui pengaruh kandungan asam laktat dan total bakteri asam laktat silase jerami jagung (Zea mays. L) dengan penambahan aditif yan...
Lignin as Feedstock for Nanoparticles Production
Lignin as Feedstock for Nanoparticles Production
Lignin is an interesting natural polymer with characteristics that contribute for the development and growth of plants. Lignin presents high variability associated with the diversi...
Heat resistive, binder‐free 3d‐dough composite as a highly potent flame‐retardant
Heat resistive, binder‐free 3d‐dough composite as a highly potent flame‐retardant
AbstractWe have synthesized sodium polyacrylate and bentonite supported phosphorous functionalized flame retardant (FR) dough material. The dough material has flame retardant and h...

Back to Top