Javascript must be enabled to continue!
Coherent categorical structures for Lie bialgebras, Manin triples, classical r-matrices and pre-Lie algebras
View through CrossRef
Abstract
The broadly applied notions of Lie bialgebras, Manin triples, classical r-matrices and
????
{\mathcal{O}}
-operators of Lie algebras owe their importance to the close relationships among them.
Yet these notions and their correspondences are mostly understood as classes of objects and maps among the classes.
To gain categorical insight, this paper introduces, for each of the classes, a notion of homomorphisms, uniformly called coherent homomorphisms, so that the classes of objects become categories and the maps among the classes become functors or category equivalences. For this purpose, we start with the notion of an endo Lie algebra, consisting of a Lie algebra equipped with a Lie algebra endomorphism. We then generalize the above classical notions for Lie algebras to endo Lie algebras. As a result, we obtain the notion of coherent endomorphisms for each of the classes, which then generalizes to the notion of coherent homomorphisms by a polarization process. The coherent homomorphisms are compatible with the correspondences among the various constructions, as well as with the category of pre-Lie algebras.
Title: Coherent categorical structures for Lie bialgebras, Manin triples, classical r-matrices and pre-Lie algebras
Description:
Abstract
The broadly applied notions of Lie bialgebras, Manin triples, classical r-matrices and
????
{\mathcal{O}}
-operators of Lie algebras owe their importance to the close relationships among them.
Yet these notions and their correspondences are mostly understood as classes of objects and maps among the classes.
To gain categorical insight, this paper introduces, for each of the classes, a notion of homomorphisms, uniformly called coherent homomorphisms, so that the classes of objects become categories and the maps among the classes become functors or category equivalences.
For this purpose, we start with the notion of an endo Lie algebra, consisting of a Lie algebra equipped with a Lie algebra endomorphism.
We then generalize the above classical notions for Lie algebras to endo Lie algebras.
As a result, we obtain the notion of coherent endomorphisms for each of the classes, which then generalizes to the notion of coherent homomorphisms by a polarization process.
The coherent homomorphisms are compatible with the correspondences among the various constructions, as well as with the category of pre-Lie algebras.
Related Results
Quasi-pre-Lie bialgebras and twisting of pre-Lie algebras
Quasi-pre-Lie bialgebras and twisting of pre-Lie algebras
Given a (quasi-)twilled pre-Lie algebra, we first construct a differential graded Lie algebra ([Formula: see text]-algebra). Then we study the twisting theory of (quasi-)twilled pr...
3-Hom–Lie Yang–Baxter Equation and 3-Hom–Lie Bialgebras
3-Hom–Lie Yang–Baxter Equation and 3-Hom–Lie Bialgebras
In this paper, we first introduce the notion of a 3-Hom–Lie bialgebra and give an equivalent description of the 3-Hom–Lie bialgebras, the matched pairs and the Manin triples of 3-H...
Finitely Presented Heyting Algebras
Finitely Presented Heyting Algebras
In this paper we study the structure of finitely presented Heyting<br />algebras. Using algebraic techniques (as opposed to techniques from proof-theory) we show that every s...
Realizations of 3-Lie algebras
Realizations of 3-Lie algebras
3-Lie algebras have close relationships with many important fields in mathematics and mathematical physics. In this paper, we provide a construction of 3-Lie algebras in terms of L...
Weak pseudo-BCK algebras
Weak pseudo-BCK algebras
Abstract
In this paper we define and study the weak pseudo-BCK algebras as generalizations of weak BCK-algebras, extending some results given by Cı⃖rulis for weak BC...
Central invariants and enveloping algebras of braided Hom-Lie algebras
Central invariants and enveloping algebras of braided Hom-Lie algebras
Let (H,?) be a monoidal Hom-Hopf algebra and HH HYD the Hom-Yetter-Drinfeld
category over (H,?). Then in this paper, we first introduce the definition
of braided Hom-Lie alge...
Malcev Yang-Baxter equation, weighted $\mathcal{O}$-operators on Malcev algebras and post-Malcev algebras
Malcev Yang-Baxter equation, weighted $\mathcal{O}$-operators on Malcev algebras and post-Malcev algebras
The purpose of this paper is to study the $\mathcal{O}$-operators on Malcev algebras and discuss the solutions of Malcev Yang-Baxter equation by $\mathcal{O}$-operators. Furthe...
On t-derivations of PMS-algebras
On t-derivations of PMS-algebras
Background PMS algebras are a type of algebraic structure that has been studied extensively in recent years. They are a generalization of several other algebraic structures, such a...

