Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Immunomodulating Profile of Dental Mesenchymal Stromal Cells: A Comprehensive Overview

View through CrossRef
Dental mesenchymal stromal cells (MSCs) are multipotent cells present in dental tissues, characterized by plastic adherence in culture and specific surface markers (CD105, CD73, CD90, STRO-1, CD106, and CD146), common to all other MSC subtypes. Dental pulp, periodontal ligament, apical papilla, human exfoliated deciduous teeth, alveolar bone, dental follicle, tooth germ, and gingiva are all different sources for isolation and expansion of MSCs. Dental MSCs have regenerative and immunomodulatory properties; they are scarcely immunogenic but actively modulate T cell reactivity.in vitrostudies and animal models of autoimmune diseases have provided evidence for the suppressive effects of dental MSCs on peripheral blood mononuclear cell proliferation, clearance of apoptotic cells, and promotion of a shift in the Treg/Th17 cell ratio. Appropriately stimulated MSCs produce anti-inflammatory mediators, such as transforming growth factor-β (TGF-β), prostaglandin E2, and interleukin (IL)-10. A particular mechanism through which MSCs exert their immunomodulatory action isviathe production of extracellular vesicles containing such anti-inflammatory mediators. Recent studies demonstrated MSC-mediated inhibitory effects both on monocytes and activated macrophages, promoting their polarization to an anti-inflammatory M2-phenotype. A growing number of trials focusing on MSCs to treat autoimmune and inflammatory conditions are ongoing, but very few use dental tissue as a cellular source. Recent results suggest that dental MSCs are a promising therapeutic tool for immune-mediated disorders. However, the exact mechanisms responsible for dental MSC-mediated immunosuppression remain to be clarified, and impairment of dental MSCs immunosuppressive function in inflammatory conditions and aging must be assessed before considering autologous MSCs or their secreted vesicles for therapeutic purposes.
Title: Immunomodulating Profile of Dental Mesenchymal Stromal Cells: A Comprehensive Overview
Description:
Dental mesenchymal stromal cells (MSCs) are multipotent cells present in dental tissues, characterized by plastic adherence in culture and specific surface markers (CD105, CD73, CD90, STRO-1, CD106, and CD146), common to all other MSC subtypes.
Dental pulp, periodontal ligament, apical papilla, human exfoliated deciduous teeth, alveolar bone, dental follicle, tooth germ, and gingiva are all different sources for isolation and expansion of MSCs.
Dental MSCs have regenerative and immunomodulatory properties; they are scarcely immunogenic but actively modulate T cell reactivity.
in vitrostudies and animal models of autoimmune diseases have provided evidence for the suppressive effects of dental MSCs on peripheral blood mononuclear cell proliferation, clearance of apoptotic cells, and promotion of a shift in the Treg/Th17 cell ratio.
Appropriately stimulated MSCs produce anti-inflammatory mediators, such as transforming growth factor-β (TGF-β), prostaglandin E2, and interleukin (IL)-10.
A particular mechanism through which MSCs exert their immunomodulatory action isviathe production of extracellular vesicles containing such anti-inflammatory mediators.
Recent studies demonstrated MSC-mediated inhibitory effects both on monocytes and activated macrophages, promoting their polarization to an anti-inflammatory M2-phenotype.
A growing number of trials focusing on MSCs to treat autoimmune and inflammatory conditions are ongoing, but very few use dental tissue as a cellular source.
Recent results suggest that dental MSCs are a promising therapeutic tool for immune-mediated disorders.
However, the exact mechanisms responsible for dental MSC-mediated immunosuppression remain to be clarified, and impairment of dental MSCs immunosuppressive function in inflammatory conditions and aging must be assessed before considering autologous MSCs or their secreted vesicles for therapeutic purposes.

Related Results

p62 Signaling Is Increased in Multiple Myeloma Microenvironment.
p62 Signaling Is Increased in Multiple Myeloma Microenvironment.
Abstract The bone microenvironment plays a critical role in promoting both tumor growth and bone destruction in myeloma (MM). Marrow stromal cells produce factors, w...
Guest Editorial
Guest Editorial
Dental caries is one of the major health problems in Indonesia. Data from Indonesian Basic Health Research in 2013, 2015 and 2018 showed a consistent increase in the prevalence of ...
Management of Oblique Root Fracture Using Mineral Trioxide Aggregate: A Case Report
Management of Oblique Root Fracture Using Mineral Trioxide Aggregate: A Case Report
Root fractures are relatively uncommon compared to other types of dental traumas. It is sometimes extremely difficult for practitioners to decide what should be done and which appr...
Differential marker expression by cultures rich in mesenchymal stem cells
Differential marker expression by cultures rich in mesenchymal stem cells
AbstractBackgroundMesenchymal stem cells have properties that make them amenable to therapeutic use. However, the acceptance of mesenchymal stem cells in clinical practice requires...
CXCL12 Production by Early Mesenchymal Progenitors Is Required for Hematopoietic Stem Cell Maintenance
CXCL12 Production by Early Mesenchymal Progenitors Is Required for Hematopoietic Stem Cell Maintenance
Abstract Abstract 510 Hematopoietic stem cells (HSCs) reside in a specialized microenvironment in the bone marrow that provides key signals required f...
Megakaryocytes Support Viability Proliferation and Protection of Primary Pre-B ALL Cells from Chemotherapy
Megakaryocytes Support Viability Proliferation and Protection of Primary Pre-B ALL Cells from Chemotherapy
Abstract BACKGROUND: The bone marrow is known to shelter leukemia cells from chemotherapy and contributes to the survival of chemotherapy resistant residual cells, t...
O-065 The naughty cells of the endometriumxx
O-065 The naughty cells of the endometriumxx
Abstract Stem/progenitor cells are the naughty cells of the endometrium! The term “naughty” has a number of connotations, one being immaturity which I will apply to ...
MARS-seq2.0: an experimental and analytical pipeline for indexed sorting combined with single-cell RNA sequencing v1
MARS-seq2.0: an experimental and analytical pipeline for indexed sorting combined with single-cell RNA sequencing v1
Human tissues comprise trillions of cells that populate a complex space of molecular phenotypes and functions and that vary in abundance by 4–9 orders of magnitude. Relying solely ...

Back to Top