Javascript must be enabled to continue!
Routine Measurement of Water Vapour Using GNSS in the Framework of the Map-Io Project
View through CrossRef
The “Marion Dufresne Atmospheric Program-Indian Ocean” (MAP-IO) project is a research program that aims to collect long-term atmospheric observations in the under-instrumented Indian and Austral Oceans. As part of this project, a Global Navigation Satellite System (GNSS) antenna was installed on the research vessel (R/V) Marion Dufresne in October 2020. GNSS raw data is intended to be used to retrieve Integrated Water Vapour (IWV) content along the Marion Dufresne route, which cruises more than 300 days per year in the tropical and austral Indian Ocean. This paper presents a first assessment of this GNSS-based IWV retrieval, based on the analysis of 9 months of GNSS raw data acquired along the route of the R/V Marion Dufresne in the Indian Ocean. A first investigation of GNSS raw data collected during the first 5 months of operation has highlighted the bad positioning of the antenna on the R/V that makes it prone to interference. Changing the location of the antenna has been shown to improve the quality of the raw data. Then, ship-borne GNSS-IWV are compared with IWV estimates deduced using more conventional techniques such as European Centre for Medium-range Weather Forecasts (ECMWF) fifth reanalysis (ERA5), ground-launched radiosondes and permanent ground GNSS stations operating close to the route of the R/V Marion Dufresne. The rms difference of 2.79 kg m−2 shows a good match with ERA5 and subsequently improved after the change in location of the GNSS antenna (2.49 kg m−2). The match with ground-based permanent GNSS stations fluctuates between 1.30 and 3.63 kg m−2, which is also shown to be improved after the change in location of the GNSS antenna. However, differences with ground-launched radiosondes still exhibit large biases (larger than 2 kg m−2). Finally, two operational daily routine analyses (at day+1 and day+3) are presented and assessed: the rms of the differences are shown to be quite low (1 kg m−2 for the day+1 analyses, 0.7 kg m−2 for the day+3 analysis), which confirms the quality of these routine analysis. These two routine analyses are intended to provide a continuous monitoring of water vapour above the Indian Ocean and deliver ship-borne IWV with a low latency for the entire scientific community.
Title: Routine Measurement of Water Vapour Using GNSS in the Framework of the Map-Io Project
Description:
The “Marion Dufresne Atmospheric Program-Indian Ocean” (MAP-IO) project is a research program that aims to collect long-term atmospheric observations in the under-instrumented Indian and Austral Oceans.
As part of this project, a Global Navigation Satellite System (GNSS) antenna was installed on the research vessel (R/V) Marion Dufresne in October 2020.
GNSS raw data is intended to be used to retrieve Integrated Water Vapour (IWV) content along the Marion Dufresne route, which cruises more than 300 days per year in the tropical and austral Indian Ocean.
This paper presents a first assessment of this GNSS-based IWV retrieval, based on the analysis of 9 months of GNSS raw data acquired along the route of the R/V Marion Dufresne in the Indian Ocean.
A first investigation of GNSS raw data collected during the first 5 months of operation has highlighted the bad positioning of the antenna on the R/V that makes it prone to interference.
Changing the location of the antenna has been shown to improve the quality of the raw data.
Then, ship-borne GNSS-IWV are compared with IWV estimates deduced using more conventional techniques such as European Centre for Medium-range Weather Forecasts (ECMWF) fifth reanalysis (ERA5), ground-launched radiosondes and permanent ground GNSS stations operating close to the route of the R/V Marion Dufresne.
The rms difference of 2.
79 kg m−2 shows a good match with ERA5 and subsequently improved after the change in location of the GNSS antenna (2.
49 kg m−2).
The match with ground-based permanent GNSS stations fluctuates between 1.
30 and 3.
63 kg m−2, which is also shown to be improved after the change in location of the GNSS antenna.
However, differences with ground-launched radiosondes still exhibit large biases (larger than 2 kg m−2).
Finally, two operational daily routine analyses (at day+1 and day+3) are presented and assessed: the rms of the differences are shown to be quite low (1 kg m−2 for the day+1 analyses, 0.
7 kg m−2 for the day+3 analysis), which confirms the quality of these routine analysis.
These two routine analyses are intended to provide a continuous monitoring of water vapour above the Indian Ocean and deliver ship-borne IWV with a low latency for the entire scientific community.
Related Results
GNSS reflectometry for land remote sensing applications
GNSS reflectometry for land remote sensing applications
Soil moisture and vegetation biomass are two essential parameters from a scienti c and economical point of view. On one hand, they are key for the understanding of the hydrological...
GNSS-based orbit and geodetic parameter estimation by means of simulated GENESIS data
GNSS-based orbit and geodetic parameter estimation by means of simulated GENESIS data
The ESA GENESIS mission, which obtained green light at ESA's Council Meeting at Ministerial Level in November 2022 and which is expected to be launched in 2027, aims to significant...
On the Impact of GNSS Multipath Correction Maps on Slant Wet Delays for Tracking Severe Weather Events
On the Impact of GNSS Multipath Correction Maps on Slant Wet Delays for Tracking Severe Weather Events
<p>Climate change has led to an increase in the frequency and severity of weather events with intense precipitation and subsequently a greater susceptibility to flash...
Correcting geocenter motion in GNSS solutions by combining with satellite laser ranging data
Correcting geocenter motion in GNSS solutions by combining with satellite laser ranging data
Abstract
Geocenter motion in GNSS solutions is ill-defined because of the GNSS orbit modeling errors. Especially, the Z geocenter component derived from GNSS data is most...
GNSS Storm Nowcasting Demonstrator for Bulgaria
GNSS Storm Nowcasting Demonstrator for Bulgaria
Global Navigation Satellite System (GNSS) is an established atmospheric monitoring technique delivering water vapour data in near-real time with a latency of 90 min for operational...
GNSS Storm Nowcasting Demonstrator for Bulgaria
GNSS Storm Nowcasting Demonstrator for Bulgaria
Global Navigation Satellite System (GNSS) is an established atmospheric monitoring technique delivering water vapour data in near-real time with a latency of 90 min for operational...
New Developments in Near Real-Time GNSS Zenith Total Delay Estimates at the University of Luxembourg
New Developments in Near Real-Time GNSS Zenith Total Delay Estimates at the University of Luxembourg
Recently, the University of Luxembourg (UL), in collaboration with the United Kingdom Met Office, has started providing accurate near real-time (NRT) Zenith Total Delays (ZTDs) fro...
Use of Formation Water and Associated Gases and their Simultaneous Utilization for Obtaining Microelement Concentrates Fresh Water and Drinking Water
Use of Formation Water and Associated Gases and their Simultaneous Utilization for Obtaining Microelement Concentrates Fresh Water and Drinking Water
Abstract Purpose: The invention relates to the oil industry, inorganic chemistry, in particular, to the methods of complex processing of formation water, using flare gas of oil and...


