Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Circuit Complexity From Supersymmetric Quantum Field Theory With Morse Function

View through CrossRef
Computation of circuit complexity has gained much attention in the Theoretical Physics community in recent times to gain insights about the chaotic features and random fluctuations of fields in the quantum regime. Recent studies of circuit complexity take inspiration from the geometric approach of Nielsen, which itself is based on the idea of optimal quantum control in which a cost function is introduced for the various possible path to determine the optimum circuit. In this paper, we study the relationship between the circuit complexity and Morse theory within the framework of algebraic topology using which we study circuit complexity in supersymmetric quantum field theory describing both simple and inverted harmonic oscillators up to higher orders of quantum corrections. The expression of circuit complexity in quantum regime would then be given by the Hessian of the Morse function in supersymmetric quantum field theory, and try to draw conclusion from their graphical behaviour. We also provide a technical proof of the well known universal connecting relation between quantum chaos and circuit complexity of the supersymmetric quantum field theories, using the general description of Morse theory.
Title: Circuit Complexity From Supersymmetric Quantum Field Theory With Morse Function
Description:
Computation of circuit complexity has gained much attention in the Theoretical Physics community in recent times to gain insights about the chaotic features and random fluctuations of fields in the quantum regime.
Recent studies of circuit complexity take inspiration from the geometric approach of Nielsen, which itself is based on the idea of optimal quantum control in which a cost function is introduced for the various possible path to determine the optimum circuit.
In this paper, we study the relationship between the circuit complexity and Morse theory within the framework of algebraic topology using which we study circuit complexity in supersymmetric quantum field theory describing both simple and inverted harmonic oscillators up to higher orders of quantum corrections.
The expression of circuit complexity in quantum regime would then be given by the Hessian of the Morse function in supersymmetric quantum field theory, and try to draw conclusion from their graphical behaviour.
We also provide a technical proof of the well known universal connecting relation between quantum chaos and circuit complexity of the supersymmetric quantum field theories, using the general description of Morse theory.

Related Results

Circuit Complexity from Supersymmetric Quantum Field Theory with Morse Function
Circuit Complexity from Supersymmetric Quantum Field Theory with Morse Function
Computation of circuit complexity has gained much attention in the theoretical physics community in recent times, to gain insights into the chaotic features and random fluctuations...
Advanced frameworks for fraud detection leveraging quantum machine learning and data science in fintech ecosystems
Advanced frameworks for fraud detection leveraging quantum machine learning and data science in fintech ecosystems
The rapid expansion of the fintech sector has brought with it an increasing demand for robust and sophisticated fraud detection systems capable of managing large volumes of financi...
Quantum information outside quantum information
Quantum information outside quantum information
Quantum theory, as counter-intuitive as a theory can get, has turned out to make predictions of the physical world that match observations so precisely that it has been described a...
Advancements in Quantum Computing and Information Science
Advancements in Quantum Computing and Information Science
Abstract: The chapter "Advancements in Quantum Computing and Information Science" explores the fundamental principles, historical development, and modern applications of quantum co...
Integrating quantum neural networks with machine learning algorithms for optimizing healthcare diagnostics and treatment outcomes
Integrating quantum neural networks with machine learning algorithms for optimizing healthcare diagnostics and treatment outcomes
The rapid advancements in artificial intelligence (AI) and quantum computing have catalyzed an unprecedented shift in the methodologies utilized for healthcare diagnostics and trea...
Revolutionizing multimodal healthcare diagnosis, treatment pathways, and prognostic analytics through quantum neural networks
Revolutionizing multimodal healthcare diagnosis, treatment pathways, and prognostic analytics through quantum neural networks
The advent of quantum computing has introduced significant potential to revolutionize healthcare through quantum neural networks (QNNs), offering unprecedented capabilities in proc...
Graded Quantum Noise in Quantum Field Theories
Graded Quantum Noise in Quantum Field Theories
The aim of this article is to introduce into quantum field theory, \(\Bbb Z_n\times\Bbb Z_n\) graded quantum stochastic calculus with the aim of generalizing supersymmetric quantum...
Complexity Theory
Complexity Theory
The workshop Complexity Theory was organised by Joachim von zur Gathen (Bonn), Oded Goldreich (Rehovot), Claus-Peter Schnorr (Frankfurt), and Madhu Sudan ...

Back to Top