Javascript must be enabled to continue!
The effects of cellulose nanocrystal and dicumyl peroxide on the crystallization kinetics of polylactic acid
View through CrossRef
AbstractCellulose nanocrystals (CNCs) have been blended into polylactic acid (PLA) to improve the polymer's properties. The dispersion of CNC in the matrix has a strong influence on the properties of the nanocomposites. In this study, PLA and CNC were compounded by a reactive extrusion process using dicarbonyl peroxide (DCP) as the free radical initiator. Isothermal and non‐isothermal crystallization kinetics of the resulting nanocomposites were investigated to understand the effect of PLA‐D‐CNC on the crystallization of the materials. Nuclear magnetic resonance and Fourier transform infrared spectroscopy analyses confirmed the grafting of PLA onto CNC via reactive extrusion. The Avrami and Tobin model studies showed that the reactive extrusion product PLA‐D‐CNC exhibited much higher crystallization rates compared to neat PLA, PLA/CNC (without DCP), and PLA/DCP. The maximum crystallization rate temperature of PLA, PLA/CNC, and PLA/DCP was increased from ~100 to ~110°C for PLA‐D‐CNC. The results showed that CNC promoted PLA nucleation and crystallization at high temperatures under the action of DCP. Specifically, the maximum crystallization rate of PLA‐D‐CNC was 46 times higher than that of neat PLA. PLA‐D‐CNC showed a two‐stage crystallization process, while the other three samples exhibited mostly single‐stage processes. The much‐enhanced crystallization of PLA‐D‐CNC was ascribed to the improved interaction between PLA and PLA‐D‐CNC and the homogeneous dispersion of CNC.Highlights
PLA chains were grafted onto CNC with the assistance of DCP free radicals.
PLA‐grafted CNC facilitated heterogeneous nucleation of PLA.
Crystallization studies confirmed improved PLA crystallization in the presence of PLA‐D‐CNC.
Title: The effects of cellulose nanocrystal and dicumyl peroxide on the crystallization kinetics of polylactic acid
Description:
AbstractCellulose nanocrystals (CNCs) have been blended into polylactic acid (PLA) to improve the polymer's properties.
The dispersion of CNC in the matrix has a strong influence on the properties of the nanocomposites.
In this study, PLA and CNC were compounded by a reactive extrusion process using dicarbonyl peroxide (DCP) as the free radical initiator.
Isothermal and non‐isothermal crystallization kinetics of the resulting nanocomposites were investigated to understand the effect of PLA‐D‐CNC on the crystallization of the materials.
Nuclear magnetic resonance and Fourier transform infrared spectroscopy analyses confirmed the grafting of PLA onto CNC via reactive extrusion.
The Avrami and Tobin model studies showed that the reactive extrusion product PLA‐D‐CNC exhibited much higher crystallization rates compared to neat PLA, PLA/CNC (without DCP), and PLA/DCP.
The maximum crystallization rate temperature of PLA, PLA/CNC, and PLA/DCP was increased from ~100 to ~110°C for PLA‐D‐CNC.
The results showed that CNC promoted PLA nucleation and crystallization at high temperatures under the action of DCP.
Specifically, the maximum crystallization rate of PLA‐D‐CNC was 46 times higher than that of neat PLA.
PLA‐D‐CNC showed a two‐stage crystallization process, while the other three samples exhibited mostly single‐stage processes.
The much‐enhanced crystallization of PLA‐D‐CNC was ascribed to the improved interaction between PLA and PLA‐D‐CNC and the homogeneous dispersion of CNC.
Highlights
PLA chains were grafted onto CNC with the assistance of DCP free radicals.
PLA‐grafted CNC facilitated heterogeneous nucleation of PLA.
Crystallization studies confirmed improved PLA crystallization in the presence of PLA‐D‐CNC.
Related Results
Influence of Manufacturing Parameters on the Properties of 3D Printed Polylactic Acid Carbon Fiber Components
Influence of Manufacturing Parameters on the Properties of 3D Printed Polylactic Acid Carbon Fiber Components
This study investigates the impact of printing parameters on fused filament fabrication parts using Polylactic acid and polylactic acid carbon fibre filament. It aims to determine ...
Synthesis, and Characterization of Cellulose Nanocrystal (CNC) From Corncob /PVA Based Bio nanocomposite
Synthesis, and Characterization of Cellulose Nanocrystal (CNC) From Corncob /PVA Based Bio nanocomposite
Abstract
The study has been carried out to investigate the effect of incorporating corncob cellulose nanocrystals in polyvinyl alcohol (PVA) matrix with the aim of enhancin...
Synthesis, and Characterization of Cellulose Nanocrystal (CNC) From Corncob /PVA Based Nanocomposite
Synthesis, and Characterization of Cellulose Nanocrystal (CNC) From Corncob /PVA Based Nanocomposite
Abstract
The study has been carried out to investigate the effect of incorporating corncob cellulose nanocrystals in polyvinyl alcohol (PVA) matrix with the aim of enhancin...
The comparison of cellulose regeneration behavior in different solvents after sulfuric acid treatment
The comparison of cellulose regeneration behavior in different solvents after sulfuric acid treatment
Abstract
Background
The efficient utilization of cellulose requires certain treatments. Regeneration of cellulose after dissolving it using chemical reagents is one of the...
On the relationships between the Michaelis–Menten kinetics, reverse Michaelis–Menten kinetics, equilibrium chemistry approximation kinetics, and quadratic kinetics
On the relationships between the Michaelis–Menten kinetics, reverse Michaelis–Menten kinetics, equilibrium chemistry approximation kinetics, and quadratic kinetics
Abstract. The Michaelis–Menten kinetics and the reverse Michaelis–Menten kinetics are two popular mathematical formulations used in many land biogeochemical models to describe how ...
On the relationships between Michaelis–Menten kinetics, reverse Michaelis–Menten kinetics, Equilibrium Chemistry Approximation kinetics and quadratic kinetics
On the relationships between Michaelis–Menten kinetics, reverse Michaelis–Menten kinetics, Equilibrium Chemistry Approximation kinetics and quadratic kinetics
Abstract. The Michaelis–Menten kinetics and the reverse Michaelis–Menten kinetics are two popular mathematical formulations used in many land biogeochemical models to describe how ...
Preparation and Characterization of Cellulose and Microcrystalline Cellulose from Sugarcane Bagasse and Assessment of the Microcrystalline Cellulose as a Directly Compressible Excipient
Preparation and Characterization of Cellulose and Microcrystalline Cellulose from Sugarcane Bagasse and Assessment of the Microcrystalline Cellulose as a Directly Compressible Excipient
Cellulose, the most abundant biomass material in nature finds wide applications in the pharmaceutical industry. Sugarcane bagasse (SCB) is one of the main agricultural lignocellul...
Effect of PTW on crystallization kinetics of toughened PBT/PC blends
Effect of PTW on crystallization kinetics of toughened PBT/PC blends
AbstractPoly(butylenes terephthalate) (PBT)/polycarbonate (PC)/poly(ethylenebutylacrylate- glycidyl methacrylate copolymer) (PTW) blends containing PTW as toughening modifier were ...


