Javascript must be enabled to continue!
Modal analysis reveals imprint of snowflake shape on wake flow structures
View through CrossRef
Abstract
This study investigates the complex interplay of wake flow structures, particle shape, and falling behavior of snowflakes through advanced flow analysis. We employ Proper Orthogonal Decomposition and Dynamic Mode Decomposition to analyze the wake flow patterns of three distinct snowflake geometries at Reynolds number of 1500: a dendrite crystal, a columnar crystal, and a rosette-like particle. Proper Orthogonal Decomposition reveals that spatial resolution significantly impacts the capture of flow structures, particularly for particles with with more intricate wake flow structure, corresponding to unstable falling motion. Dynamic Mode Decomposition demonstrates high sensitivity to temporal resolution, with data of the forces exerted on the snowflake incorporated in the matrix prior to the decomposition mitigating information loss at lower sampling rates. We establish a linear relationship between snowflake shape porosity and minimum and maximum Dynamic Mode Decomposition eigenfrequencies, absolute decay or growth rates, and wavenumbers of the most energetic mode, linking particle geometry to wake flow characteristics. Higher porosity corresponds to more stable, small-scale flow structures and steady falling motion, while lower porosity promotes larger, unstable structures and falling trajectories with random particle orientations. These findings reveal the interdependence of snowflake geometry, wake flow configuration, and falling behavior and highlight the importance of considering both spatial and temporal resolutions when dealing with modal analysis. This research contributes to improved predictions of snowflake falling behavior, with potential applications in meteorology and climate science.
Title: Modal analysis reveals imprint of snowflake shape on wake flow structures
Description:
Abstract
This study investigates the complex interplay of wake flow structures, particle shape, and falling behavior of snowflakes through advanced flow analysis.
We employ Proper Orthogonal Decomposition and Dynamic Mode Decomposition to analyze the wake flow patterns of three distinct snowflake geometries at Reynolds number of 1500: a dendrite crystal, a columnar crystal, and a rosette-like particle.
Proper Orthogonal Decomposition reveals that spatial resolution significantly impacts the capture of flow structures, particularly for particles with with more intricate wake flow structure, corresponding to unstable falling motion.
Dynamic Mode Decomposition demonstrates high sensitivity to temporal resolution, with data of the forces exerted on the snowflake incorporated in the matrix prior to the decomposition mitigating information loss at lower sampling rates.
We establish a linear relationship between snowflake shape porosity and minimum and maximum Dynamic Mode Decomposition eigenfrequencies, absolute decay or growth rates, and wavenumbers of the most energetic mode, linking particle geometry to wake flow characteristics.
Higher porosity corresponds to more stable, small-scale flow structures and steady falling motion, while lower porosity promotes larger, unstable structures and falling trajectories with random particle orientations.
These findings reveal the interdependence of snowflake geometry, wake flow configuration, and falling behavior and highlight the importance of considering both spatial and temporal resolutions when dealing with modal analysis.
This research contributes to improved predictions of snowflake falling behavior, with potential applications in meteorology and climate science.
Related Results
Optimal tuning of engineering wake models through LiDAR measurements
Optimal tuning of engineering wake models through LiDAR measurements
Abstract. Engineering wake models provide the invaluable advantage to predict wind turbine wakes, power capture, and, in turn, annual energy production for an entire wind farm with...
Impact of rotor solidity and blade number on wake characteristics of vertical-axis wind turbines
Impact of rotor solidity and blade number on wake characteristics of vertical-axis wind turbines
Wake interference between wind turbines is a major concern in wind farms and is primarily driven by the wake of upstream turbines. For vertical-axis wind turbines (VAWTs), although...
Statistical Analysis on The Near-Wake Region of RANS Turbulence Closure Models for Vertical Axis Tidal Turbine
Statistical Analysis on The Near-Wake Region of RANS Turbulence Closure Models for Vertical Axis Tidal Turbine
The flow field in the near wake region (up to six turbine diameters downstream) of a tidal current turbine is strongly driven by the combined wake of the device support structure a...
Multiphase Flow Metering:An Evaluation of Discharge Coefficients
Multiphase Flow Metering:An Evaluation of Discharge Coefficients
Abstract
The orifice discharge coefficient (CD) is the constant required to correct theoretical flow rate to actual flow rate. It is known that single phase orifi...
Pressure Analysis of DST Flow Period Or Slug Flow For Horizontal Wells In Homogeneous Reservoir
Pressure Analysis of DST Flow Period Or Slug Flow For Horizontal Wells In Homogeneous Reservoir
Abstract
By the transient pressure for horizontal well with constant flow rate and Duhamel's principle, this paper presents the method to calculate the transient ...
Modal Sosial Masyarakat Dusun Melayang dalam Pemanfaatan Buah Tengkawang di Hutan Adat Pikul
Modal Sosial Masyarakat Dusun Melayang dalam Pemanfaatan Buah Tengkawang di Hutan Adat Pikul
AbstrakModal sosial adalah kemampuan masyarakat untuk bekerjasama demi mencapai suatu tujuan bersama didalam suatu kelompok. Hutan Adat Pikul memiliki potensi tengkawang yang sanga...
Determinants of Cerebrovascular Reserve in Patients with Significant Carotid Stenosis
Determinants of Cerebrovascular Reserve in Patients with Significant Carotid Stenosis
AbstractIntroductionIn patients with 70% to 99% diameter carotid artery stenosis cerebral blood flow reserve may be protective of future ischemic cerebral events. Reserve cerebral ...
Characterization of Oil-Water Two-phase Flow Patterns in Vertical Upward Flow Pipes Based on Fractal and Chaotic Time Series Analysis
Characterization of Oil-Water Two-phase Flow Patterns in Vertical Upward Flow Pipes Based on Fractal and Chaotic Time Series Analysis
Abstract
Characterization of oil-water two-phase flow patterns in vertical upward oil-water two-phase flow having an inner diameter 18mm are elucidated based on f...


