Javascript must be enabled to continue!
An endogenous GLP-1 circuit engages VTA GABA neurons to regulate mesolimbic dopamine neurons and attenuate cocaine seeking
View through CrossRef
AbstractRecent studies show that systemic administration of a glucagon-like peptide-1 receptor (GLP-1R) agonist is sufficient to attenuate the reinstatement of cocaine-seeking behavior, an animal model of relapse. However, the neural mechanisms mediating these effects and the role of endogenous central GLP-1 signaling in cocaine seeking remain unknown. Here, we show that voluntary cocaine taking decreased plasma GLP-1 levels in rats and that chemogenetic activation of GLP-1-producing neurons in the nucleus tractus solitarius (NTS) that project to the ventral tegmental area (VTA) decreased cocaine reinstatement. Single nuclei transcriptomics and FISH studies revealed GLP-1Rs are expressed primarily on GABA neurons in the VTA. Usingin vivofiber photometry, we found that the efficacy of a systemic GLP-1R agonist to attenuate cocaine seeking was associated with increased activity of VTA GABA neurons and decreased activity of VTA dopamine neurons. Together, these findings suggest that targeting central GLP-1 circuits may be an effective strategy toward reducing cocaine relapse and highlight a novel functional role of GABAergic GLP-1R-expressing midbrain neurons in drug seeking.
Cold Spring Harbor Laboratory
Title: An endogenous GLP-1 circuit engages VTA GABA neurons to regulate mesolimbic dopamine neurons and attenuate cocaine seeking
Description:
AbstractRecent studies show that systemic administration of a glucagon-like peptide-1 receptor (GLP-1R) agonist is sufficient to attenuate the reinstatement of cocaine-seeking behavior, an animal model of relapse.
However, the neural mechanisms mediating these effects and the role of endogenous central GLP-1 signaling in cocaine seeking remain unknown.
Here, we show that voluntary cocaine taking decreased plasma GLP-1 levels in rats and that chemogenetic activation of GLP-1-producing neurons in the nucleus tractus solitarius (NTS) that project to the ventral tegmental area (VTA) decreased cocaine reinstatement.
Single nuclei transcriptomics and FISH studies revealed GLP-1Rs are expressed primarily on GABA neurons in the VTA.
Usingin vivofiber photometry, we found that the efficacy of a systemic GLP-1R agonist to attenuate cocaine seeking was associated with increased activity of VTA GABA neurons and decreased activity of VTA dopamine neurons.
Together, these findings suggest that targeting central GLP-1 circuits may be an effective strategy toward reducing cocaine relapse and highlight a novel functional role of GABAergic GLP-1R-expressing midbrain neurons in drug seeking.
Related Results
Arousal-State Dependent Alterations in VTA-GABAergic Neural Activity
Arousal-State Dependent Alterations in VTA-GABAergic Neural Activity
AbstractDecades of research have implicated the ventral tegmental area (VTA) in motivation, reinforcement learning and reward processing. We and others recently demonstrated that i...
Renal vasodilation induced by Glucagon‐like peptide‐1 is mediated only by the known receptor
Renal vasodilation induced by Glucagon‐like peptide‐1 is mediated only by the known receptor
Glucagon‐like peptide‐1 (GLP‐1) stimulates insulin release after a meal. The GLP‐1 receptor is found in many tissues including the renal vasculature. GLP‐1 increases renal blood fl...
Exploring the in vivo subthreshold membrane activity of phasic firing in midbrain dopamine neurons
Exploring the in vivo subthreshold membrane activity of phasic firing in midbrain dopamine neurons
Dopamine is a key neurotransmitter that serves several essential functions in daily behaviors such as locomotion, motivation, stimulus coding, and learning. Disrupted dopamine circ...
Vascular Consequences of Cocaine Exposure.
Vascular Consequences of Cocaine Exposure.
Abstract
Cocaine use is associated with sudden cardiac death, cardiac ischemia, and stroke in patients with no additional risk factors and is a frequent cause of the...
Cocaine-induced DNA-PK relieves RNAP II pausing by promoting TRIM28 phosphorylation
Cocaine-induced DNA-PK relieves RNAP II pausing by promoting TRIM28 phosphorylation
AbstractDrug abuse continues to pose a significant challenge in HIV control efforts. In our investigation, we discovered that cocaine not only upregulates the expression of DNA-dep...
Perturbation of GABA Biosynthesis Links Cell Cycle to ControlArabidopsis thalianaLeaf Development
Perturbation of GABA Biosynthesis Links Cell Cycle to ControlArabidopsis thalianaLeaf Development
AbstractTo investigate the molecular mechanism underlying increasing leaf area in γ-Aminobutyric acid (GABA) biosynthetic mutants, the first pair of true leaves of GABA biosyntheti...
Dramatically Decreased Cocaine Self-Administration in Dopamine But Not Serotonin Transporter Knock-Out Mice
Dramatically Decreased Cocaine Self-Administration in Dopamine But Not Serotonin Transporter Knock-Out Mice
There has been much interest in the relative importance of dopamine and serotonin transporters in the abuse-related-effects of cocaine. We tested the hypotheses that mice lacking t...
Vigabatrin
Vigabatrin
Summary: γ‐Aminobutyric acid (GABA) was first proposed as a putative inhibitory neurotransmitter by Elliot and van Gelder in 1958. Since then, numerous efforts have been made to f...

