Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Genome-Wide Association Studies and Whole-Genome Prediction Reveal the Genetic Architecture of KRN in Maize

View through CrossRef
Abstract Background: Kernel row number (KRN) is an important trait for the domestication and improvement of maize. To explore the genetic basis of KRN has great research significance and can provide the valuable information for molecular assisted selection.Results: In this study, one single-locus method (MLM) and six multi-locus methods (mrMLM, FASTmrMLM, FASTmrEMMA, pLARmEB, pKWmEB and ISIS EM-BLASSO) of genome-wide association studies (GWASs) were used to identify significant quantitative trait nucleotides (QTNs) for KRN in an association panel including 639 maize inbred lines that were genotyped by the MaizeSNP50 BeadChip. In three phenotyping environments and with best linear unbiased prediction (BLUP) values, seven GWAS methods revealed different numbers of KRN-associated QTNs, ranging from 11 to 177. Based on these results, seven important regions for KRN located on chromosomes 1, 2, 3, 5, 9, and 10 were identified by at least three methods and in at least two environments. Moreover, 49 genes from the seven regions were expressed in different maize tissues. Among the 49 genes, ARF29 (Zm00001d026540, encoding auxin response factor 29) and CKO4 (Zm00001d043293, encoding cytokinin oxidase protein) were significantly related to KRN based on expression analysis and candidate gene association mapping. Whole-genome prediction (WGP) for KRN was also performed, and we found that the KRN-associated tagSNPs achieved a high prediction accuracy. The best strategy was to integrate the total KRN-associated tagSNPs identified by all GWAS models. Conclusions: These results aid in our understanding of the genetic architecture of KRN and provide useful information for genomic selection for KRN in maize breeding.
Title: Genome-Wide Association Studies and Whole-Genome Prediction Reveal the Genetic Architecture of KRN in Maize
Description:
Abstract Background: Kernel row number (KRN) is an important trait for the domestication and improvement of maize.
To explore the genetic basis of KRN has great research significance and can provide the valuable information for molecular assisted selection.
Results: In this study, one single-locus method (MLM) and six multi-locus methods (mrMLM, FASTmrMLM, FASTmrEMMA, pLARmEB, pKWmEB and ISIS EM-BLASSO) of genome-wide association studies (GWASs) were used to identify significant quantitative trait nucleotides (QTNs) for KRN in an association panel including 639 maize inbred lines that were genotyped by the MaizeSNP50 BeadChip.
In three phenotyping environments and with best linear unbiased prediction (BLUP) values, seven GWAS methods revealed different numbers of KRN-associated QTNs, ranging from 11 to 177.
Based on these results, seven important regions for KRN located on chromosomes 1, 2, 3, 5, 9, and 10 were identified by at least three methods and in at least two environments.
Moreover, 49 genes from the seven regions were expressed in different maize tissues.
Among the 49 genes, ARF29 (Zm00001d026540, encoding auxin response factor 29) and CKO4 (Zm00001d043293, encoding cytokinin oxidase protein) were significantly related to KRN based on expression analysis and candidate gene association mapping.
Whole-genome prediction (WGP) for KRN was also performed, and we found that the KRN-associated tagSNPs achieved a high prediction accuracy.
The best strategy was to integrate the total KRN-associated tagSNPs identified by all GWAS models.
Conclusions: These results aid in our understanding of the genetic architecture of KRN and provide useful information for genomic selection for KRN in maize breeding.

Related Results

Are Cervical Ribs Indicators of Childhood Cancer? A Narrative Review
Are Cervical Ribs Indicators of Childhood Cancer? A Narrative Review
Abstract A cervical rib (CR), also known as a supernumerary or extra rib, is an additional rib that forms above the first rib, resulting from the overgrowth of the transverse proce...
Improvement of Provitamin A in Maize Varieties Using Arbuscular Mycorrhizal Fungus, Glomus clarum
Improvement of Provitamin A in Maize Varieties Using Arbuscular Mycorrhizal Fungus, Glomus clarum
Arbuscular mycorrhizal fungus (AMF, Glomus clarum) has been used widely as a bio-amendment and bio-control agent in several biotechnological studies. In this study, biofortificatio...
Effects of maize-soybean rotation and plant residue return on maize yield and soil microbial communities
Effects of maize-soybean rotation and plant residue return on maize yield and soil microbial communities
Abstract Background and aims The practice of returning corn stalks back to fields is widely implemented in maize cropping systems, but its impacts on maize yield is incons...
Legume based Profitable Intercropping System for Management of Fall Armyworm in Maize
Legume based Profitable Intercropping System for Management of Fall Armyworm in Maize
Background: Incidence of fall armyworm in maize has been reported at a severe level since 2018 resulting in low yield and in extreme cases complete failure of the crop. In view of ...
Maize Disease Recognition Based On Image Enhancement And OSCRNet
Maize Disease Recognition Based On Image Enhancement And OSCRNet
Abstract Background: Under natural light irradiation, there are significant challenges in the identification of maize leaf diseases because of the difficulties in extractin...
Radiotracers for examining biological functions of plants and microbes
Radiotracers for examining biological functions of plants and microbes
Tracers are used for qualitative and quantitative investigation of a system. Radiotracers have a radionuclide to observe chemical or biological processes by detection of the radion...
Recognition of Maize Tassels Based on Improved YOLOv8 and Unmanned Aerial Vehicles RGB Images
Recognition of Maize Tassels Based on Improved YOLOv8 and Unmanned Aerial Vehicles RGB Images
The tasseling stage of maize, as a critical period of maize cultivation, is essential for predicting maize yield and understanding the normal condition of maize growth. However, th...

Back to Top