Javascript must be enabled to continue!
Integrated Analysis of RNA-Binding Proteins in Glioma
View through CrossRef
RNA-binding proteins (RBPs) play important roles in many cancer types. However, RBPs have not been thoroughly and systematically studied in gliomas. Global analysis of the functional impact of RBPs will provide a better understanding of gliomagenesis and new insights into glioma therapy. In this study, we integrated a list of the human RBPs from six sources—Gerstberger, SONAR, Gene Ontology project, Poly(A) binding protein, CARIC, and XRNAX—which covered 4127 proteins with RNA-binding activity. The RNA sequencing data were downloaded from The Cancer Genome Atlas (TCGA) (n = 699) and Chinese Glioma Genome Atlas (CGGA) (n = 325 + 693). We examined the differentially expressed genes (DEGs) using the R package DESeq2, and constructed a weighted gene co-expression network analysis (WGCNA) of RBPs. Furthermore, survival analysis was also performed based on the univariate and multivariate Cox proportional hazards regression models. In the WGCNA analysis, we identified a key module involved in the overall survival (OS) of glioblastomas. Survival analysis revealed eight RBPs (PTRF, FNDC3B, SLC25A43, ZC3H12A, LRRFIP1, HSP90B1, HSPA5, and BNC2) are significantly associated with the survival of glioblastoma patients. Another 693 patients within the CGGA database were used to validate the findings. Additionally, 3564 RBPs were classified into canonical and non-canonical RBPs depending on the domains that they contain, and non-canonical RBPs account for the majority (72.95%). The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that some non-canonical RBPs may have functions in glioma. Finally, we found that the knockdown of non-canonical RBPs, PTRF, or FNDC3B can alone significantly inhibit the proliferation of LN229 and U251 cells. Simultaneously, RNA Immunoprecipitation (RIP) analysis indicated that PTRF may regulate cell growth and death- related pathways to maintain tumor cell growth. In conclusion, our findings presented an integrated view to assess the potential death risks of glioblastoma at a molecular level, based on the expression of RBPs. More importantly, we identified non-canonical RNA-binding proteins PTRF and FNDC3B, showing them to be potential prognostic biomarkers for glioblastoma.
Title: Integrated Analysis of RNA-Binding Proteins in Glioma
Description:
RNA-binding proteins (RBPs) play important roles in many cancer types.
However, RBPs have not been thoroughly and systematically studied in gliomas.
Global analysis of the functional impact of RBPs will provide a better understanding of gliomagenesis and new insights into glioma therapy.
In this study, we integrated a list of the human RBPs from six sources—Gerstberger, SONAR, Gene Ontology project, Poly(A) binding protein, CARIC, and XRNAX—which covered 4127 proteins with RNA-binding activity.
The RNA sequencing data were downloaded from The Cancer Genome Atlas (TCGA) (n = 699) and Chinese Glioma Genome Atlas (CGGA) (n = 325 + 693).
We examined the differentially expressed genes (DEGs) using the R package DESeq2, and constructed a weighted gene co-expression network analysis (WGCNA) of RBPs.
Furthermore, survival analysis was also performed based on the univariate and multivariate Cox proportional hazards regression models.
In the WGCNA analysis, we identified a key module involved in the overall survival (OS) of glioblastomas.
Survival analysis revealed eight RBPs (PTRF, FNDC3B, SLC25A43, ZC3H12A, LRRFIP1, HSP90B1, HSPA5, and BNC2) are significantly associated with the survival of glioblastoma patients.
Another 693 patients within the CGGA database were used to validate the findings.
Additionally, 3564 RBPs were classified into canonical and non-canonical RBPs depending on the domains that they contain, and non-canonical RBPs account for the majority (72.
95%).
The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that some non-canonical RBPs may have functions in glioma.
Finally, we found that the knockdown of non-canonical RBPs, PTRF, or FNDC3B can alone significantly inhibit the proliferation of LN229 and U251 cells.
Simultaneously, RNA Immunoprecipitation (RIP) analysis indicated that PTRF may regulate cell growth and death- related pathways to maintain tumor cell growth.
In conclusion, our findings presented an integrated view to assess the potential death risks of glioblastoma at a molecular level, based on the expression of RBPs.
More importantly, we identified non-canonical RNA-binding proteins PTRF and FNDC3B, showing them to be potential prognostic biomarkers for glioblastoma.
Related Results
Accurate in silico predictions of modified RNA interactions to a prototypical RNA-binding protein with λ-dynamics
Accurate in silico predictions of modified RNA interactions to a prototypical RNA-binding protein with λ-dynamics
RNA-binding proteins shape biology through their widespread functions in RNA biochemistry. Their function requires the recognition of specific RNA motifs for targeted binding. Thes...
Accurate in silico predictions of modified RNA interactions to a prototypical RNA-binding protein with λ-dynamics
Accurate in silico predictions of modified RNA interactions to a prototypical RNA-binding protein with λ-dynamics
RNA-binding proteins shape biology through their widespread functions in RNA biochemistry. Their function requires the recognition of specific RNA motifs for targeted binding. Thes...
Induction of prostaglandin E2 synthesis and microsomal prostaglandin E synthase–1 expression in murine microglia by glioma-derived soluble factors
Induction of prostaglandin E2 synthesis and microsomal prostaglandin E synthase–1 expression in murine microglia by glioma-derived soluble factors
Object
Microglia are one of the members of monocyte/macrophage lineage in the central nervous system (CNS) and exist as ramified microglia in a normal resting state, but they are a...
Proteome-Wide Identification of RNA-Dependent Proteins in Lung Cancer Cells
Proteome-Wide Identification of RNA-Dependent Proteins in Lung Cancer Cells
Following the concept of RNA dependence and exploiting its application in the R-DeeP screening approach, we have identified RNA-dependent proteins in A549 lung adenocarcinoma cells...
B-247 BLADE-R: streamlined RNA extraction for clinical diagnostics and high-throughput applications
B-247 BLADE-R: streamlined RNA extraction for clinical diagnostics and high-throughput applications
Abstract
Background
Efficient nucleic acid extraction and purification are crucial for cellular and molecular biology research, ...
Comprehensive analysis of Histone deacetylases genes in the prognosis and immune infiltration of glioma patients
Comprehensive analysis of Histone deacetylases genes in the prognosis and immune infiltration of glioma patients
AbstractThe occurrence and development of tumors are closely related to histone deacetylases (HDACs). However, the overall biology and prognosis are still unknown in glioma. In the...
Data from Vasorin Exocytosed from Glioma Cells Facilitates Angiogenesis via VEGFR2/AKT Signaling Pathway
Data from Vasorin Exocytosed from Glioma Cells Facilitates Angiogenesis via VEGFR2/AKT Signaling Pathway
<div>Abstract<p>Glioma is a highly vascularized tumor of the central nervous system. Angiogenesis plays a predominant role in glioma progression and is considered an im...
Data from Vasorin Exocytosed from Glioma Cells Facilitates Angiogenesis via VEGFR2/AKT Signaling Pathway
Data from Vasorin Exocytosed from Glioma Cells Facilitates Angiogenesis via VEGFR2/AKT Signaling Pathway
<div>Abstract<p>Glioma is a highly vascularized tumor of the central nervous system. Angiogenesis plays a predominant role in glioma progression and is considered an im...

