Javascript must be enabled to continue!
Global transcriptomics reveals specialized roles for splicing regulatory proteins in the macrophage innate immune response
View through CrossRef
ABSTRACTPathogen sensing via pattern recognition receptors triggers massive reprogramming of macro-phage gene expression. While the signaling cascades and transcription factors that activate these responses are well-known, the role of post-transcriptional RNA processing in modulating innate immune gene expression remains understudied. Recent phosphoproteomics analyses revealed that members of the SR and hnRNP families of splicing regulatory proteins are dynamically post-translationally modified in infected macrophages. To begin to test if these splicing factors play a privileged role in controlling the innate immune transcriptome, we analyzed steady state gene expression and alternatively spliced isoform production in ten SR/hnRNP knockdown RAW 264.7 macrophage cell lines following infection with the bacterial pathogenSalmonella entericaserovar Typhimurium (Salmonella). We identified thousands of transcripts whose abundance was increased or decreased by SR/hnRNP knockdown in macrophages. We observed that different SR/hnRNPs control the expression of distinct gene regulons in uninfected andSalmonella-infected macrophages, with several key innate immune genes (Nos2, Mx1, Il1a) relying on multiple SR/hnRNPs to maintain proper induction and/or repression. Knockdown of SR/hnRNPs promoted differential isoform usage (DIU) for a number of key immune sensors and signaling molecules and many of these splicing changes were again, distinct in uninfected andSalmonella-infected macrophages. Finally, after observing a surprising degree of similarity between the DEGs and DIUs in hnRNP K and U knockdown macrophages, we found that these cells are better able to restrict vesicular stomatitis virus replication than control cells, supporting a role for these hnRNPs in controlling infection outcomes in macrophagesex vivo. Based on these findings, we conclude that many innate immune genes have evolved to rely on one or more splicing regulatory factors to ensure the proper timing and magnitude of their induction, bolstering a model wherein pre-mRNA splicing is a critical regulatory node in the innate immune response.
Title: Global transcriptomics reveals specialized roles for splicing regulatory proteins in the macrophage innate immune response
Description:
ABSTRACTPathogen sensing via pattern recognition receptors triggers massive reprogramming of macro-phage gene expression.
While the signaling cascades and transcription factors that activate these responses are well-known, the role of post-transcriptional RNA processing in modulating innate immune gene expression remains understudied.
Recent phosphoproteomics analyses revealed that members of the SR and hnRNP families of splicing regulatory proteins are dynamically post-translationally modified in infected macrophages.
To begin to test if these splicing factors play a privileged role in controlling the innate immune transcriptome, we analyzed steady state gene expression and alternatively spliced isoform production in ten SR/hnRNP knockdown RAW 264.
7 macrophage cell lines following infection with the bacterial pathogenSalmonella entericaserovar Typhimurium (Salmonella).
We identified thousands of transcripts whose abundance was increased or decreased by SR/hnRNP knockdown in macrophages.
We observed that different SR/hnRNPs control the expression of distinct gene regulons in uninfected andSalmonella-infected macrophages, with several key innate immune genes (Nos2, Mx1, Il1a) relying on multiple SR/hnRNPs to maintain proper induction and/or repression.
Knockdown of SR/hnRNPs promoted differential isoform usage (DIU) for a number of key immune sensors and signaling molecules and many of these splicing changes were again, distinct in uninfected andSalmonella-infected macrophages.
Finally, after observing a surprising degree of similarity between the DEGs and DIUs in hnRNP K and U knockdown macrophages, we found that these cells are better able to restrict vesicular stomatitis virus replication than control cells, supporting a role for these hnRNPs in controlling infection outcomes in macrophagesex vivo.
Based on these findings, we conclude that many innate immune genes have evolved to rely on one or more splicing regulatory factors to ensure the proper timing and magnitude of their induction, bolstering a model wherein pre-mRNA splicing is a critical regulatory node in the innate immune response.
Related Results
EPD Electronic Pathogen Detection v1
EPD Electronic Pathogen Detection v1
Electronic pathogen detection (EPD) is a non - invasive, rapid, affordable, point- of- care test, for Covid 19 resulting from infection with SARS-CoV-2 virus. EPD scanning techno...
Nuclear Encoded RNA Splicing Factors in Plant Mitochondria
Nuclear Encoded RNA Splicing Factors in Plant Mitochondria
Mitochondria are the site of respiration and numerous other metabolic processes required for plant growth and development. Increased demands for metabolic energy are observed durin...
Alternative Splicing of Serum Response Factor Reveals Isoform-Specific Remodeling in Cardiac Diseases
Alternative Splicing of Serum Response Factor Reveals Isoform-Specific Remodeling in Cardiac Diseases
Background: Alternative splicing is an important mechanism of transcriptomic and proteomic diversity and is progressively involved in cardiovascular disease (CVD) pathogenesis. Ser...
The splicing factor hnRNP M is a critical regulator of innate immune gene expression in macrophages
The splicing factor hnRNP M is a critical regulator of innate immune gene expression in macrophages
ABSTRACTWhile transcriptional control mechanisms of innate immune gene expression are well characterized, almost nothing is known about how pre-mRNA splicing decisions influence, o...
Innate Immunity and Autoimmune Diseases
Innate Immunity and Autoimmune Diseases
The innate immune response is responsible for the initial defense against invading pathogens and signs of damage; in turn, it activates the adaptive immune response to result in hi...
Long-read sequencing of nascent RNA reveals coupling among RNA processing events
Long-read sequencing of nascent RNA reveals coupling among RNA processing events
AbstractPre-mRNA splicing is accomplished by the spliceosome, a megadalton complex that assemblesde novoon each intron. Because spliceosome assembly and catalysis occur co-transcri...
Alcohol use disorder causes global changes in splicing in the human brain
Alcohol use disorder causes global changes in splicing in the human brain
AbstractAlcohol use disorder (AUD) is a widespread disease leading to the deterioration of cognitive and other functions. Mechanisms by which alcohol affects the brain are not full...
Impaired Function of Fancc-/- Immune Cells.
Impaired Function of Fancc-/- Immune Cells.
Abstract
Abstract 1494
Fanconi anemia (FA) is a genetic disorder characterized by bone marrow (BM) failure, developmental defects and cancer predispos...

