Javascript must be enabled to continue!
Helmholtz Hamiltonian Mechanics Electromagnetic Physics Gaging Generalizing Mass-Charge and Charge-Fields Gage Metrics to Quantum Relativity Gage Metrics
View through CrossRef
This article will continue ansatz gage matrix of Iyer Markoulakis Helmholtz Hamiltonian mechanics points’ fields gage to Pauli Dirac monopole particle fields ansatz gage general formalism at Planck level, by constructing a Pauli Dirac Planck circuit matrix field gradient of particle monopole flow loop. This circuit assembly gage (PDPcag) that maybe operating at the quantum level, demonstrates the power of point fields matrix theoretical quantum general formalism of Iyer Markoulakis Helmholtz Hamiltonian mechanics transformed to Coulomb gage metrics, to form eigenvector fields of magnetic monopoles as well as electron positron particle gage metrics fields. Eigenvector calculations performed based on Iyer Markoulakis quantum general formalism are substituted for gage values of typical eigenvectors of dipolar magnetically biased monopoles with their conjugate eigenvectors, as well as eigenvector fields that are of the electron and positron particles. Then they are compiled to form combinatorial eigenvector matrix bundle of the monopole particle circuit field constructs assembly. Evaluation of this monopole particle fields matrix provided eigenvector fields results like SUSY, having Hermitian quantum matrix with electron-positron annihilation alongside north and south monopoles collapsing to dipolar “stable” magnetism, representing electromagnetic gaging typical metrics fields. Applying experimental observations on magnetic poles with measuring magnetic forces John Hodge’s results were showing asymmetrical pole forces; author has mathematically constructed asymmetric\strings\gage\metrics to characterize electromagnetic gravity, putting together while integrating with stringmetrics gravity that author has been reporting in earlier published articles. Physical Analysis with generalization of mass-charge and charge-fields gage metrics to quantum relativity gage metrics fields are proposed based on author’s proof formalism paper providing derivational algorithmic steps, to determine gage parametric values within the equation of Coulomb gage. Vortex fields’ wavefunctions and the scalar potential characterized by a function and a coupling constant having quantum density matrix together define the gage metrics quantifiable observable measurement physics of electron-positron cross-diagonal fields; contrastingly, diagonal terms of PDPcag matrix characterizes electron-positron particle eigenvector fields, while Hilbert Higgs mass metrics characterizes eigen-matter. Author is already working with Christopher O’Neill about magic square symmetry configurations to quantitatively understand symmetry, structure, and the real space geometry that are expected to form out of vacuum quanta point fields’ quantitative quantum general formalism theory of Iyer Markoulakis. In addition, author is currently collaborating with Manuel Malaver’s astrophysical Einstein Minkowski modified space time metrics evaluations of the sense-time-space relativistic general metrics to have means to account for curving or shaping of spacetime topology of a five-dimensional sense-time-space. Manuel Malaver’s specialization with modified Einstein Maxwell equations for modeling galaxies and stars cosmological physics, utilizing Einstein-Maxwell-Tolman- Schwarzschild and Reissner-Nordström spacetime and black holes theoretical formalisms have author of this paper collaboratively model quantum astrophysics of dark energy Star’s theory with Einstein-Gauss-Bonnet gravity equations.
Title: Helmholtz Hamiltonian Mechanics Electromagnetic Physics Gaging Generalizing Mass-Charge and Charge-Fields Gage Metrics to Quantum Relativity Gage Metrics
Description:
This article will continue ansatz gage matrix of Iyer Markoulakis Helmholtz Hamiltonian mechanics points’ fields gage to Pauli Dirac monopole particle fields ansatz gage general formalism at Planck level, by constructing a Pauli Dirac Planck circuit matrix field gradient of particle monopole flow loop.
This circuit assembly gage (PDPcag) that maybe operating at the quantum level, demonstrates the power of point fields matrix theoretical quantum general formalism of Iyer Markoulakis Helmholtz Hamiltonian mechanics transformed to Coulomb gage metrics, to form eigenvector fields of magnetic monopoles as well as electron positron particle gage metrics fields.
Eigenvector calculations performed based on Iyer Markoulakis quantum general formalism are substituted for gage values of typical eigenvectors of dipolar magnetically biased monopoles with their conjugate eigenvectors, as well as eigenvector fields that are of the electron and positron particles.
Then they are compiled to form combinatorial eigenvector matrix bundle of the monopole particle circuit field constructs assembly.
Evaluation of this monopole particle fields matrix provided eigenvector fields results like SUSY, having Hermitian quantum matrix with electron-positron annihilation alongside north and south monopoles collapsing to dipolar “stable” magnetism, representing electromagnetic gaging typical metrics fields.
Applying experimental observations on magnetic poles with measuring magnetic forces John Hodge’s results were showing asymmetrical pole forces; author has mathematically constructed asymmetric\strings\gage\metrics to characterize electromagnetic gravity, putting together while integrating with stringmetrics gravity that author has been reporting in earlier published articles.
Physical Analysis with generalization of mass-charge and charge-fields gage metrics to quantum relativity gage metrics fields are proposed based on author’s proof formalism paper providing derivational algorithmic steps, to determine gage parametric values within the equation of Coulomb gage.
Vortex fields’ wavefunctions and the scalar potential characterized by a function and a coupling constant having quantum density matrix together define the gage metrics quantifiable observable measurement physics of electron-positron cross-diagonal fields; contrastingly, diagonal terms of PDPcag matrix characterizes electron-positron particle eigenvector fields, while Hilbert Higgs mass metrics characterizes eigen-matter.
Author is already working with Christopher O’Neill about magic square symmetry configurations to quantitatively understand symmetry, structure, and the real space geometry that are expected to form out of vacuum quanta point fields’ quantitative quantum general formalism theory of Iyer Markoulakis.
In addition, author is currently collaborating with Manuel Malaver’s astrophysical Einstein Minkowski modified space time metrics evaluations of the sense-time-space relativistic general metrics to have means to account for curving or shaping of spacetime topology of a five-dimensional sense-time-space.
Manuel Malaver’s specialization with modified Einstein Maxwell equations for modeling galaxies and stars cosmological physics, utilizing Einstein-Maxwell-Tolman- Schwarzschild and Reissner-Nordström spacetime and black holes theoretical formalisms have author of this paper collaboratively model quantum astrophysics of dark energy Star’s theory with Einstein-Gauss-Bonnet gravity equations.
Related Results
Advanced frameworks for fraud detection leveraging quantum machine learning and data science in fintech ecosystems
Advanced frameworks for fraud detection leveraging quantum machine learning and data science in fintech ecosystems
The rapid expansion of the fintech sector has brought with it an increasing demand for robust and sophisticated fraud detection systems capable of managing large volumes of financi...
Advancements in Quantum Computing and Information Science
Advancements in Quantum Computing and Information Science
Abstract: The chapter "Advancements in Quantum Computing and Information Science" explores the fundamental principles, historical development, and modern applications of quantum co...
Integrating quantum neural networks with machine learning algorithms for optimizing healthcare diagnostics and treatment outcomes
Integrating quantum neural networks with machine learning algorithms for optimizing healthcare diagnostics and treatment outcomes
The rapid advancements in artificial intelligence (AI) and quantum computing have catalyzed an unprecedented shift in the methodologies utilized for healthcare diagnostics and trea...
Quantum information outside quantum information
Quantum information outside quantum information
Quantum theory, as counter-intuitive as a theory can get, has turned out to make predictions of the physical world that match observations so precisely that it has been described a...
Revolutionizing multimodal healthcare diagnosis, treatment pathways, and prognostic analytics through quantum neural networks
Revolutionizing multimodal healthcare diagnosis, treatment pathways, and prognostic analytics through quantum neural networks
The advent of quantum computing has introduced significant potential to revolutionize healthcare through quantum neural networks (QNNs), offering unprecedented capabilities in proc...
Some New Aspects of Quantum Gravity
Some New Aspects of Quantum Gravity
We have proposed the quantization of the gravitational field in a synchronous reference frame taking as independent position fields, the six spatial components of the metric tensor...
Graded Quantum Noise in Quantum Field Theories
Graded Quantum Noise in Quantum Field Theories
The aim of this article is to introduce into quantum field theory, \(\Bbb Z_n\times\Bbb Z_n\) graded quantum stochastic calculus with the aim of generalizing supersymmetric quantum...
Optimization of the performance of quantum thermoacoustic micro-cycle
Optimization of the performance of quantum thermoacoustic micro-cycle
The purpose of this paper is to optimize the performance of a quantum thermoacoustic micro-cycle. Thermoacoustic devices, such as thermoacoustic engines, thermoacoustic refrigerato...

