Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Functionalization of Partially Bio-Based Poly(Ethylene Terephthalate) by Blending with Fully Bio-Based Poly(Amide) 10,10 and a Glycidyl Methacrylate-Based Compatibilizer

View through CrossRef
This work shows the potential of binary blends composed of partially bio-based poly(ethyelene terephthalate) (bioPET) and fully bio-based poly(amide) 10,10 (bioPA1010). These blends are manufactured by extrusion and subsequent injection moulding and characterized in terms of mechanical, thermal and thermomechanical properties. To overcome or minimize the immiscibility, a glycidyl methacrylate copolymer, namely poly(styrene-ran-glycidyl methacrylate) (PS-GMA; Xibond™ 920) was used. The addition of 30 wt % bioPA provides increased renewable content up to 50 wt %, but the most interesting aspect is that bioPA contributes to improved toughness and other ductile properties such as elongation at yield. The morphology study revealed a typical immiscible droplet-like structure and the effectiveness of the PS-GMA copolymer was assessed by field emission scanning electron microcopy (FESEM) with a clear decrease in the droplet size due to compatibilization. It is possible to conclude that bioPA1010 can positively contribute to reduce the intrinsic stiffness of bioPET and, in addition, it increases the renewable content of the developed materials.
Title: Functionalization of Partially Bio-Based Poly(Ethylene Terephthalate) by Blending with Fully Bio-Based Poly(Amide) 10,10 and a Glycidyl Methacrylate-Based Compatibilizer
Description:
This work shows the potential of binary blends composed of partially bio-based poly(ethyelene terephthalate) (bioPET) and fully bio-based poly(amide) 10,10 (bioPA1010).
These blends are manufactured by extrusion and subsequent injection moulding and characterized in terms of mechanical, thermal and thermomechanical properties.
To overcome or minimize the immiscibility, a glycidyl methacrylate copolymer, namely poly(styrene-ran-glycidyl methacrylate) (PS-GMA; Xibond™ 920) was used.
The addition of 30 wt % bioPA provides increased renewable content up to 50 wt %, but the most interesting aspect is that bioPA contributes to improved toughness and other ductile properties such as elongation at yield.
The morphology study revealed a typical immiscible droplet-like structure and the effectiveness of the PS-GMA copolymer was assessed by field emission scanning electron microcopy (FESEM) with a clear decrease in the droplet size due to compatibilization.
It is possible to conclude that bioPA1010 can positively contribute to reduce the intrinsic stiffness of bioPET and, in addition, it increases the renewable content of the developed materials.

Related Results

Montmorillonite-reinforced nanocomposite from off-grade plastics materials using response surface analysis
Montmorillonite-reinforced nanocomposite from off-grade plastics materials using response surface analysis
Off-grade thermoplastic poly(ethylene terephthalate) of industrial manufacturers was partially depolymerized to synthesize poly(ethylene terephthalate) oligomers. Influences of rea...
Controlling Ethylene Responses in Horticultural Crops at the Receptor Level
Controlling Ethylene Responses in Horticultural Crops at the Receptor Level
Ethylene is a plant hormone that controls many plant responses, such as growth, senescence, ripening, abscission and seed germination. Recently, 1-methy- cyclopropene (1-MCP), was ...
SAFETY CONTROL SYSTEMS FOR ETHYLENE PRODUCTION
SAFETY CONTROL SYSTEMS FOR ETHYLENE PRODUCTION
Ethylene production is a cornerstone of the petrochemical industry, with a global demand that continues to rise. Ensuring efficient, safe, and environmentally responsible ethylene ...
Uncovering the Potential of Ethylene Inhibitors on Delaying Ethylene Mediated Senescence and Preserving Cut Life of Climacteric Flowers
Uncovering the Potential of Ethylene Inhibitors on Delaying Ethylene Mediated Senescence and Preserving Cut Life of Climacteric Flowers
Maintaining the vase life and quality of cut flowers is one of the main obstacle in floriculture industry. Cut flowers, especially climacteric ones have very short life span attrib...

Back to Top