Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

A Monte Carlo-Based Outlier Diagnosis Method for Sensitivity Analysis

View through CrossRef
An iterative outlier elimination procedure based on hypothesis testing, commonly known as Iterative Data Snooping (IDS) among geodesists, is often used for the quality control of modern measurement systems in geodesy and surveying. The test statistic associated with IDS is the extreme normalised least-squares residual. It is well-known in the literature that critical values (quantile values) of such a test statistic cannot be derived from well-known test distributions but must be computed numerically by means of Monte Carlo. This paper provides the first results on the Monte Carlo-based critical value inserted into different scenarios of correlation between outlier statistics. From the Monte Carlo evaluation, we compute the probabilities of correct identification, missed detection, wrong exclusion, over-identifications and statistical overlap associated with IDS in the presence of a single outlier. On the basis of such probability levels, we obtain the Minimal Detectable Bias (MDB) and Minimal Identifiable Bias (MIB) for cases in which IDS is in play. The MDB and MIB are sensitivity indicators for outlier detection and identification, respectively. The results show that there are circumstances in which the larger the Type I decision error (smaller critical value), the higher the rates of outlier detection but the lower the rates of outlier identification. In such a case, the larger the Type I Error, the larger the ratio between the MIB and MDB. We also highlight that an outlier becomes identifiable when the contributions of the measures to the wrong exclusion rate decline simultaneously. In this case, we verify that the effect of the correlation between outlier statistics on the wrong exclusion rate becomes insignificant for a certain outlier magnitude, which increases the probability of identification.
Title: A Monte Carlo-Based Outlier Diagnosis Method for Sensitivity Analysis
Description:
An iterative outlier elimination procedure based on hypothesis testing, commonly known as Iterative Data Snooping (IDS) among geodesists, is often used for the quality control of modern measurement systems in geodesy and surveying.
The test statistic associated with IDS is the extreme normalised least-squares residual.
It is well-known in the literature that critical values (quantile values) of such a test statistic cannot be derived from well-known test distributions but must be computed numerically by means of Monte Carlo.
This paper provides the first results on the Monte Carlo-based critical value inserted into different scenarios of correlation between outlier statistics.
From the Monte Carlo evaluation, we compute the probabilities of correct identification, missed detection, wrong exclusion, over-identifications and statistical overlap associated with IDS in the presence of a single outlier.
On the basis of such probability levels, we obtain the Minimal Detectable Bias (MDB) and Minimal Identifiable Bias (MIB) for cases in which IDS is in play.
The MDB and MIB are sensitivity indicators for outlier detection and identification, respectively.
The results show that there are circumstances in which the larger the Type I decision error (smaller critical value), the higher the rates of outlier detection but the lower the rates of outlier identification.
In such a case, the larger the Type I Error, the larger the ratio between the MIB and MDB.
We also highlight that an outlier becomes identifiable when the contributions of the measures to the wrong exclusion rate decline simultaneously.
In this case, we verify that the effect of the correlation between outlier statistics on the wrong exclusion rate becomes insignificant for a certain outlier magnitude, which increases the probability of identification.

Related Results

A Monte Carlo-Based Outlier Diagnosis Method for Sensitivity Analysis
A Monte Carlo-Based Outlier Diagnosis Method for Sensitivity Analysis
An iterative outlier elimination procedure based on hypothesis testing, commonly known as Iterative Data Snooping (IDS) among geodesists, is often used for the quality control of t...
Monte Carlo methods: barrier option pricing with stable Greeks and multilevel Monte Carlo learning
Monte Carlo methods: barrier option pricing with stable Greeks and multilevel Monte Carlo learning
For discretely observed barrier options, there exists no closed solution under the Black-Scholes model. Thus, it is often helpful to use Monte Carlo simulations, which are easily a...
Research on Multi-Group Monte Carlo Calculations Based on Group Constants Generated by RMC
Research on Multi-Group Monte Carlo Calculations Based on Group Constants Generated by RMC
Abstract Nowadays, deterministic two-step or Monte Carlo methods are commonly used in core physics calculations. However, with the development of reactor core design, tradi...
Automation of the Monte Carlo simulation of medical linear accelerators
Automation of the Monte Carlo simulation of medical linear accelerators
The main result of this thesis is a software system, called PRIMO, which simulates clinical linear accelerators and the subsequent dose distributions using the Monte Carlo method. ...
Investigating Outlier Detection Techniques Based on Kernel Rough Clustering
Investigating Outlier Detection Techniques Based on Kernel Rough Clustering
Background: Data quality is crucial to the success of big data analytics. However, the presence of outliers affects data quality and data analysis. Employing effective outlier dete...
Exploring Large Language Models Integration in the Histopathologic Diagnosis of Skin Diseases: A Comparative Study
Exploring Large Language Models Integration in the Histopathologic Diagnosis of Skin Diseases: A Comparative Study
Abstract Introduction The exact manner in which large language models (LLMs) will be integrated into pathology is not yet fully comprehended. This study examines the accuracy, bene...
Outlier Detection and Correction for the Deviations of Tooth Profiles of Gears
Outlier Detection and Correction for the Deviations of Tooth Profiles of Gears
To decrease the influence of outlier on the measurement of tooth profiles, this paper proposes a method of outlier detection and correction based on the grey system theory. After s...
Absolute quantification in brain SPECT imaging
Absolute quantification in brain SPECT imaging
Certes malalties neurològiques estan associades amb problemes en els sistemes de neurotransmissió. Una aproximació a l'estudi d'aquests sistemes és la tomografia d'emissió SPECT (S...

Back to Top