Javascript must be enabled to continue!
Quantum Wire Fabrication by E-Beam Elithography Using High-Resolution and High-Sensitivity E-Beam Resist ZEP-520
View through CrossRef
We have evaluated the resolution of the positive electron-beam (E-beam) resist ZEP-520 using finely focused E-beam exposure for the application of quantum wire fabrication in a large area. Compared with the poly-methylmethacrylate (PMMA) resist conventionally used for nanofabrication, ZEP resist shows almost the same resolution under sensitivity improvement of one order of magnitude, and the throughput is increased by a factor of more than 100 by introducing a highly bright Zr/O/W thermal field emitter as an E-beam source. Other excellent performance characteristics, such as high dry-etching durability and process stability, allow us to apply ZEP resist for larger-area, high-density quantum wire fabrication. By both wet chemical etching and dry-etching combined with CBE selective growth, InGaAs nanostructures as small as 15 nm can be obtained with a pitch of 70 nm over several hundred µm squares.
Title: Quantum Wire Fabrication by E-Beam Elithography Using High-Resolution and High-Sensitivity E-Beam Resist ZEP-520
Description:
We have evaluated the resolution of the positive electron-beam (E-beam) resist ZEP-520 using finely focused E-beam exposure for the application of quantum wire fabrication in a large area.
Compared with the poly-methylmethacrylate (PMMA) resist conventionally used for nanofabrication, ZEP resist shows almost the same resolution under sensitivity improvement of one order of magnitude, and the throughput is increased by a factor of more than 100 by introducing a highly bright Zr/O/W thermal field emitter as an E-beam source.
Other excellent performance characteristics, such as high dry-etching durability and process stability, allow us to apply ZEP resist for larger-area, high-density quantum wire fabrication.
By both wet chemical etching and dry-etching combined with CBE selective growth, InGaAs nanostructures as small as 15 nm can be obtained with a pitch of 70 nm over several hundred µm squares.
Related Results
Advanced frameworks for fraud detection leveraging quantum machine learning and data science in fintech ecosystems
Advanced frameworks for fraud detection leveraging quantum machine learning and data science in fintech ecosystems
The rapid expansion of the fintech sector has brought with it an increasing demand for robust and sophisticated fraud detection systems capable of managing large volumes of financi...
Advancements in Quantum Computing and Information Science
Advancements in Quantum Computing and Information Science
Abstract: The chapter "Advancements in Quantum Computing and Information Science" explores the fundamental principles, historical development, and modern applications of quantum co...
Integrating quantum neural networks with machine learning algorithms for optimizing healthcare diagnostics and treatment outcomes
Integrating quantum neural networks with machine learning algorithms for optimizing healthcare diagnostics and treatment outcomes
The rapid advancements in artificial intelligence (AI) and quantum computing have catalyzed an unprecedented shift in the methodologies utilized for healthcare diagnostics and trea...
Quantum information outside quantum information
Quantum information outside quantum information
Quantum theory, as counter-intuitive as a theory can get, has turned out to make predictions of the physical world that match observations so precisely that it has been described a...
Revolutionizing multimodal healthcare diagnosis, treatment pathways, and prognostic analytics through quantum neural networks
Revolutionizing multimodal healthcare diagnosis, treatment pathways, and prognostic analytics through quantum neural networks
The advent of quantum computing has introduced significant potential to revolutionize healthcare through quantum neural networks (QNNs), offering unprecedented capabilities in proc...
Quantum metamaterials: Applications in quantum information science
Quantum metamaterials: Applications in quantum information science
Metamaterials are a class of artificially engineered materials with periodic structures possessing exceptional properties not found in conventional materials. This definition can b...
Quantum Communication and Cybersecurity
Quantum Communication and Cybersecurity
Abstract:
This book presents a comprehensive and interdisciplinary examination of the convergence between quantum information science and cybersecurity. It addresses the foundation...
Quantum Computing Techniques for Numerical Linear Algebra in Computational Mathematics
Quantum Computing Techniques for Numerical Linear Algebra in Computational Mathematics
Quantum computing is a new and exciting area of computational mathematics that has the ability to solve very hard problems that traditional computing methods have not been able to ...

