Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Generation of appropriate protein structures for virtual screening using AlphaFold3 predicted protein–ligand complexes

View through CrossRef
AbstractIn early drug discovery, virtual screening—a computational method for selecting candidate compounds—helps reduce development costs. Traditionally, structure-based virtual screening required experimental protein structures, but advances like AlphaFold2 have begun to overcome this limitation. However, AlphaFold2 does not capture ligand-induced conformational changes (transition from apo to holo forms), limiting its utility for protein–ligand docking. In this study, we evaluate AlphaFold3, which predicts protein–ligand complex structures when both protein and ligand inputs are provided. Using the DUD-E dataset and Uni-Dock, we show that holo structures predicted with ligand inclusion yield higher screening performance than apo structures generated without ligand input. Notably, incorporating active ligands enhances screening performance, whereas inactive (decoy) ligands produce results similar to apo predictions. The use of template structures further improves outcomes. We also analyze the impact of ligand molecular weight, binding pocket location, and AlphaFold3 ranking scores on screening performance. Our findings indicate that lower molecular weight ligands tend to generate predicted structures that more closely resemble experimental holo structures, thus improving screening efficacy. Conversely, larger ligands (700–800) can induce open binding pockets that favor screening for some targets. These results suggest that employing AlphaFold3 with appropriate ligand inputs is a promising strategy for virtual screening, particularly for proteins lacking experimental structural data.
Cold Spring Harbor Laboratory
Title: Generation of appropriate protein structures for virtual screening using AlphaFold3 predicted protein–ligand complexes
Description:
AbstractIn early drug discovery, virtual screening—a computational method for selecting candidate compounds—helps reduce development costs.
Traditionally, structure-based virtual screening required experimental protein structures, but advances like AlphaFold2 have begun to overcome this limitation.
However, AlphaFold2 does not capture ligand-induced conformational changes (transition from apo to holo forms), limiting its utility for protein–ligand docking.
In this study, we evaluate AlphaFold3, which predicts protein–ligand complex structures when both protein and ligand inputs are provided.
Using the DUD-E dataset and Uni-Dock, we show that holo structures predicted with ligand inclusion yield higher screening performance than apo structures generated without ligand input.
Notably, incorporating active ligands enhances screening performance, whereas inactive (decoy) ligands produce results similar to apo predictions.
The use of template structures further improves outcomes.
We also analyze the impact of ligand molecular weight, binding pocket location, and AlphaFold3 ranking scores on screening performance.
Our findings indicate that lower molecular weight ligands tend to generate predicted structures that more closely resemble experimental holo structures, thus improving screening efficacy.
Conversely, larger ligands (700–800) can induce open binding pockets that favor screening for some targets.
These results suggest that employing AlphaFold3 with appropriate ligand inputs is a promising strategy for virtual screening, particularly for proteins lacking experimental structural data.

Related Results

Prediction of Drug-Target Binding Kinetics for Flexible Proteins by Comparative Binding Energy Analysis
Prediction of Drug-Target Binding Kinetics for Flexible Proteins by Comparative Binding Energy Analysis
There is growing consensus that the optimization of the kinetic parameters for drug-protein binding leads to improved drug efficacy. Therefore, computational methods have been deve...
Prediction of Drug-Target Binding Kinetics for Flexible Proteins by Comparative Binding Energy Analysis
Prediction of Drug-Target Binding Kinetics for Flexible Proteins by Comparative Binding Energy Analysis
There is growing consensus that the optimization of the kinetic parameters for drug-protein binding leads to improved drug efficacy. Therefore, computational methods have been deve...
Nonhanded chirality in octahedral metal complexes
Nonhanded chirality in octahedral metal complexes
AbstractChiral molecules can either be handed (i.e., “shoes”) or nonhanded (“potatoes”). The only chiral ligand partition for tetrahedral metal complexes (or for a tetrahedral carb...
AI driven approaches in Nanobody Epitope Prediction: Are We There Yet?
AI driven approaches in Nanobody Epitope Prediction: Are We There Yet?
ABSTRACTNanobodies have emerged as a versatile class of biologics with promising therapeutic applications, driving the need for robust tools to predict their epitopes, a critical s...
Improving Stereochemical Limitations in Protein-Ligand Complex Structure Prediction
Improving Stereochemical Limitations in Protein-Ligand Complex Structure Prediction
Abstract AlphaFold3 has revolutionized biology by enabling the prediction of protein complexes with various biomolecules, including small molecular ligands. However, th...
Bioinformatics tool and web server development focusing on structural bioinformatics applications
Bioinformatics tool and web server development focusing on structural bioinformatics applications
This thesis is divided into two main sections: Part 1 describes the design, and evaluation of the accuracy of a new web server – PRotein Interactive MOdeling (PRIMO-Complexes) for ...
Experiment-guided AlphaFold3 resolves accurate protein ensembles
Experiment-guided AlphaFold3 resolves accurate protein ensembles
Abstract AlphaFold3 predicts highly accurate protein structures from sequence, but tends to collapse to a single dominant conformation, even when the underlying structu...
VR 101
VR 101
Today we call many things “virtual.” Virtual corporations connect teams of workers located across the country. In leisure time, people form clubs based on shared interests in polit...

Back to Top