Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Accelerators for Fusion Materials Testing

View through CrossRef
Fusion materials research is a worldwide endeavor as old as the parallel one working toward the long term stable confinement of ignited plasma. In a fusion reactor, the preservation of the required minimum thermomechanical properties of the in-vessel components exposed to the severe irradiation and heat flux conditions is an indispensable factor for safe operation; it is also an essential goal for the economic viability of fusion. Energy from fusion power will be extracted from the 14 MeV neutron freed as a product of the deuterium–tritium fusion reactions; thus, this kinetic energy must be absorbed and efficiently evacuated and electricity eventually generated by the conventional methods of a thermal power plant. Worldwide technological efforts to understand the degradation of materials exposed to 14 MeV neutron fluxes [Formula: see text] m[Formula: see text]s[Formula: see text], as expected in future fusion power plants, have been intense over the last four decades. Existing neutron sources can reach suitable dpa (“displacement-per-atom”, the figure of merit to assess materials degradation from being exposed to neutron irradiation), but the differences in the neutron spectrum of fission reactors and spallation sources do not allow one to unravel the physics and to anticipate the degradation of materials exposed to fusion neutrons. Fusion irradiation conditions can be achieved through Li (d, xn) nuclear reactions with suitable deuteron beam current and energy, and an adequate flowing lithium screen. This idea triggered in the late 1970s at Los Alamos National Laboratory (LANL) a campaign working toward the feasibility of continuous wave (CW) high current linacs framed by the Fusion Materials Irradiation Test (FMIT) project. These efforts continued with the Low Energy Demonstrating Accelerator (LEDA) (a validating prototype of the canceled Accelerator Production of Tritium (APT) project), which was proposed in 2002 to the fusion community as a 6.7[Formula: see text]MeV, 100[Formula: see text]mA CW beam injector for a Li (d, xn) source to bridge with the International Fusion Materials Irradiation Facility (IFMIF) under discussion at the time. Worldwide technological efforts are maturing soundly and the time for a fusion-relevant neutron source has arrived according to world fusion roadmaps; if decisions are taken we could count the next decade with a powerful source of 14 MeV neutrons thanks to the expected significant results of the Engineering Validation and Engineering Design Activity (EVEDA) phase of the IFMIF project. The accelerator know-how has matured in all possible aspects since the times of FMIT conception in the 1970s; today, operating 125 mA deuteron beam at 40 MeV in CW with high availabilities seems feasible thanks to the understanding of the beam halo physics and the three main technological breakthroughs in accelerator technology: (1) the ECR ion source for light ions developed at Chalk River Laboratories in the early 1990s, (2) the RFQ operation of H[Formula: see text] in CW with 100 mA demonstrated by LEDA in LANL in the late 1990s, and (3) the growing maturity of superconducting resonators for light hadrons and low [Formula: see text] beams achieved in recent years.
Title: Accelerators for Fusion Materials Testing
Description:
Fusion materials research is a worldwide endeavor as old as the parallel one working toward the long term stable confinement of ignited plasma.
In a fusion reactor, the preservation of the required minimum thermomechanical properties of the in-vessel components exposed to the severe irradiation and heat flux conditions is an indispensable factor for safe operation; it is also an essential goal for the economic viability of fusion.
Energy from fusion power will be extracted from the 14 MeV neutron freed as a product of the deuterium–tritium fusion reactions; thus, this kinetic energy must be absorbed and efficiently evacuated and electricity eventually generated by the conventional methods of a thermal power plant.
Worldwide technological efforts to understand the degradation of materials exposed to 14 MeV neutron fluxes [Formula: see text] m[Formula: see text]s[Formula: see text], as expected in future fusion power plants, have been intense over the last four decades.
Existing neutron sources can reach suitable dpa (“displacement-per-atom”, the figure of merit to assess materials degradation from being exposed to neutron irradiation), but the differences in the neutron spectrum of fission reactors and spallation sources do not allow one to unravel the physics and to anticipate the degradation of materials exposed to fusion neutrons.
Fusion irradiation conditions can be achieved through Li (d, xn) nuclear reactions with suitable deuteron beam current and energy, and an adequate flowing lithium screen.
This idea triggered in the late 1970s at Los Alamos National Laboratory (LANL) a campaign working toward the feasibility of continuous wave (CW) high current linacs framed by the Fusion Materials Irradiation Test (FMIT) project.
These efforts continued with the Low Energy Demonstrating Accelerator (LEDA) (a validating prototype of the canceled Accelerator Production of Tritium (APT) project), which was proposed in 2002 to the fusion community as a 6.
7[Formula: see text]MeV, 100[Formula: see text]mA CW beam injector for a Li (d, xn) source to bridge with the International Fusion Materials Irradiation Facility (IFMIF) under discussion at the time.
Worldwide technological efforts are maturing soundly and the time for a fusion-relevant neutron source has arrived according to world fusion roadmaps; if decisions are taken we could count the next decade with a powerful source of 14 MeV neutrons thanks to the expected significant results of the Engineering Validation and Engineering Design Activity (EVEDA) phase of the IFMIF project.
The accelerator know-how has matured in all possible aspects since the times of FMIT conception in the 1970s; today, operating 125 mA deuteron beam at 40 MeV in CW with high availabilities seems feasible thanks to the understanding of the beam halo physics and the three main technological breakthroughs in accelerator technology: (1) the ECR ion source for light ions developed at Chalk River Laboratories in the early 1990s, (2) the RFQ operation of H[Formula: see text] in CW with 100 mA demonstrated by LEDA in LANL in the late 1990s, and (3) the growing maturity of superconducting resonators for light hadrons and low [Formula: see text] beams achieved in recent years.

Related Results

The Nuclear Fusion Award
The Nuclear Fusion Award
The Nuclear Fusion Award ceremony for 2009 and 2010 award winners was held during the 23rd IAEA Fusion Energy Conference in Daejeon. This time, both 2009 and 2010 award winners w...
Nonproliferation and fusion power plants
Nonproliferation and fusion power plants
Abstract The world now appears to be on the brink of realizing commercial fusion. As fusion energy progresses towards near-term commercial deployment, the question arises a...
Fusion rate: a time-to-event phenomenon
Fusion rate: a time-to-event phenomenon
Object.The term “fusion rate” is generally denoted in the literature as the percentage of patients with successful fusion over a specific range of follow up. Because the time to fu...
Characterization and control of wet-mix sprayed concrete with accelerators
Characterization and control of wet-mix sprayed concrete with accelerators
The development of the wet-mix system and the use of the sprayed concrete as a part of the new Austrian tunnelling method (NATM) marked an increase in the use and in the structural...
Hemagglutinin stability determines influenza A virus susceptibility to a broad-spectrum fusion inhibitor Arbidol
Hemagglutinin stability determines influenza A virus susceptibility to a broad-spectrum fusion inhibitor Arbidol
AbstractUnderstanding mechanisms of resistance to antiviral inhibitors can reveal nuanced features of targeted viral mechanisms and, in turn, lead to improved strategies for inhibi...
Electrostatic Accelerators
Electrostatic Accelerators
Abstract The article contains sections titled: Introduction Types of Electrostatic Accelerators ...
Entrepreneurial finance models for born-global SMEs in Nigeria
Entrepreneurial finance models for born-global SMEs in Nigeria
The main aim of this research is to critically analyse the impact of entrepreneurial finance models (EFM) on the outcome and performance of Born-global Small and Medium Enterprises...

Back to Top