Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Poly(methyl methacrylate) and glycidyl-functionalized poly(methyl methacrylate) nano-size latex particles via differential microemulsion polymerization

View through CrossRef
The differential microemulsion polymerization technique was used to synthesize nanoparticles of glycidyl-functionalized poly(methyl methacrylate), PMMA, via a two-step process, by which the amount of sodium dodecyl sulfate (SDS) surfactant required was 1/217 of the monomer amount by weight and the surfactant/water ratio could be as low as to 1/600. The first step was to synthesize the core PMMA nanoparticles having high molecular weight of 10[superscript 6] g mol[superscript -1] using the AIBN oil soluble initiator at 70 [degrees Celsius] for 90 min by drop-wise addition of the monomer. The high molecular weight PMMA latex nanoparticles (~ 20 nm in size) have a rich syndiotactic configuration (53-57 % rr triads). The rate of polymerization increased with an increase in the concentration of the SDS surfactant. The maximum conversion of polymerization was observed at a polymerization time of 3600 s. The nearly constant value of PDI over the whole range of the polymerization time could be attributed to the significance of particle nucleation occurring via a heterogeneous nucleation mechanism. The high molecular weight PMMA nanoparticles have spherical shape with a T[subscript g] of about 125 [degrees Celsius]. The second step was to add glycidyl methacrylate in the PMMA latex via a similar manner to obtain the glycidyl-functionalized PMMA nanoparticles. A core/shell structure of the glycidyl-functionalized PMMA latex nanoparticles observed are composed of a high molecular weight PMMA core with the random copolymer of poly[(methyl methacrylate)-ran-(glycidyl methacrylate)] as a shell layer on the surface. Particle sizes of about 50 nm were achieved and the molecular weight of glycidyl-functionalized PMMA was in the range of about 1x10[superscript 6] to 3x10[superscript 6] g mol[superscript -1]. Approximately 1-2 wt% of glycidyl functional groups were determined using a titration method. The low content detected was due to precipitation and a drying effect. The glycidyl-functionalized PMMA has two regions of T[subscript g] at 90 [degrees Celsius] and 125 [degrees Celsius], which were referred to as poly[(methyl methacrylate)-ran-(glycidyl methacrylate)] and PMMA, respectively. It is very interesting to note that the polymerization conversion reaches a maximum, within a short reaction time in the presence of less surfactant and without the need of a co-surfactant along with a high monomer-to-water ratio.
Office of Academic Resources, Chulalongkorn University
Title: Poly(methyl methacrylate) and glycidyl-functionalized poly(methyl methacrylate) nano-size latex particles via differential microemulsion polymerization
Description:
The differential microemulsion polymerization technique was used to synthesize nanoparticles of glycidyl-functionalized poly(methyl methacrylate), PMMA, via a two-step process, by which the amount of sodium dodecyl sulfate (SDS) surfactant required was 1/217 of the monomer amount by weight and the surfactant/water ratio could be as low as to 1/600.
The first step was to synthesize the core PMMA nanoparticles having high molecular weight of 10[superscript 6] g mol[superscript -1] using the AIBN oil soluble initiator at 70 [degrees Celsius] for 90 min by drop-wise addition of the monomer.
The high molecular weight PMMA latex nanoparticles (~ 20 nm in size) have a rich syndiotactic configuration (53-57 % rr triads).
The rate of polymerization increased with an increase in the concentration of the SDS surfactant.
The maximum conversion of polymerization was observed at a polymerization time of 3600 s.
The nearly constant value of PDI over the whole range of the polymerization time could be attributed to the significance of particle nucleation occurring via a heterogeneous nucleation mechanism.
The high molecular weight PMMA nanoparticles have spherical shape with a T[subscript g] of about 125 [degrees Celsius].
The second step was to add glycidyl methacrylate in the PMMA latex via a similar manner to obtain the glycidyl-functionalized PMMA nanoparticles.
A core/shell structure of the glycidyl-functionalized PMMA latex nanoparticles observed are composed of a high molecular weight PMMA core with the random copolymer of poly[(methyl methacrylate)-ran-(glycidyl methacrylate)] as a shell layer on the surface.
Particle sizes of about 50 nm were achieved and the molecular weight of glycidyl-functionalized PMMA was in the range of about 1x10[superscript 6] to 3x10[superscript 6] g mol[superscript -1].
Approximately 1-2 wt% of glycidyl functional groups were determined using a titration method.
The low content detected was due to precipitation and a drying effect.
The glycidyl-functionalized PMMA has two regions of T[subscript g] at 90 [degrees Celsius] and 125 [degrees Celsius], which were referred to as poly[(methyl methacrylate)-ran-(glycidyl methacrylate)] and PMMA, respectively.
It is very interesting to note that the polymerization conversion reaches a maximum, within a short reaction time in the presence of less surfactant and without the need of a co-surfactant along with a high monomer-to-water ratio.

Related Results

On Flores Island, do "ape-men" still exist? https://www.sapiens.org/biology/flores-island-ape-men/
On Flores Island, do "ape-men" still exist? https://www.sapiens.org/biology/flores-island-ape-men/
<span style="font-size:11pt"><span style="background:#f9f9f4"><span style="line-height:normal"><span style="font-family:Calibri,sans-serif"><b><spa...
Hubungan Perilaku Pola Makan dengan Kejadian Anak Obesitas
Hubungan Perilaku Pola Makan dengan Kejadian Anak Obesitas
<p><em><span style="font-size: 11.0pt; font-family: 'Times New Roman',serif; mso-fareast-font-family: 'Times New Roman'; mso-ansi-language: EN-US; mso-fareast-langua...
Latex allergy: epidemiological study of 1351 hospital workers.
Latex allergy: epidemiological study of 1351 hospital workers.
OBJECTIVE: To determine the prevalence of latex sensitisation among a large group of healthcare workers, study the occupational and non-occupational factors associated with latex a...
Preparation of polystyrene/poly(methyl methacrylate) core‐shell composite particles by suspension‐emulsion combined polymerization
Preparation of polystyrene/poly(methyl methacrylate) core‐shell composite particles by suspension‐emulsion combined polymerization
AbstractSuspension‐emulsion combined polymerization process, in which methyl methacrylate (MMA) emulsion polymerization constituents (EPC) were drop wise added to styrene (St) susp...
Antifungal Effect of Silver Nano Particles Coating on Denture Base Specimens Made of Acrylic Resin
Antifungal Effect of Silver Nano Particles Coating on Denture Base Specimens Made of Acrylic Resin
OBJECTIVE: The present study was under taken to determine the anti-fungal effect of Silver Nano partial coating in concentrations of 0.1%, 0.2%, 0.5% and 1% on heat cure acrylic de...
Factors Affecting the Production of Poly Methyl Galacturonase Enzyme by Sclerotium rolfsii Sacc
Factors Affecting the Production of Poly Methyl Galacturonase Enzyme by Sclerotium rolfsii Sacc
The aim of this work was to investigate the effects of different culture conditions on the production of poly methyl galacturonase enzyme bySclerotium rolfsii and their optimizatio...

Back to Top