Javascript must be enabled to continue!
The Effect of Recycling on Wood-Fiber Thermoplastic Composites
View through CrossRef
The aim of this study was to investigate the effect of recycling on polypropylene (PP) and wood-fiber thermoplastic composites (WPCs) using a co-rotating twin-screw extruder. After nine extrusion passes microscopy studies confirmed that the fiber length decreased with the increased number of recycling passes but the increased processing time also resulted in excellent dispersion and interfacial adhesion of the wood fibers in the PP matrix. Thermal, rheological, and mechanical properties were studied. The repeated extrusion passes had minimal effect on thermal behavior and the viscosity decreased with an increased number of passes, indicating slight degradation. The recycling processes had an effect on the tensile strength of WPCs while the effect was minor on the PP. However, even after the nine recycling passes the strength of WPC was considerably better (37 MPa) compared to PP (28 MPa). The good degree of property retention after recycling makes this recycling strategy a viable alternative to discarding the materials. Thus, it has been demonstrated that, by following the most commonly used extrusion process, WPCs can be recycled several times and this methodology can be industrially adapted for the manufacturing of recycled products.
Title: The Effect of Recycling on Wood-Fiber Thermoplastic Composites
Description:
The aim of this study was to investigate the effect of recycling on polypropylene (PP) and wood-fiber thermoplastic composites (WPCs) using a co-rotating twin-screw extruder.
After nine extrusion passes microscopy studies confirmed that the fiber length decreased with the increased number of recycling passes but the increased processing time also resulted in excellent dispersion and interfacial adhesion of the wood fibers in the PP matrix.
Thermal, rheological, and mechanical properties were studied.
The repeated extrusion passes had minimal effect on thermal behavior and the viscosity decreased with an increased number of passes, indicating slight degradation.
The recycling processes had an effect on the tensile strength of WPCs while the effect was minor on the PP.
However, even after the nine recycling passes the strength of WPC was considerably better (37 MPa) compared to PP (28 MPa).
The good degree of property retention after recycling makes this recycling strategy a viable alternative to discarding the materials.
Thus, it has been demonstrated that, by following the most commonly used extrusion process, WPCs can be recycled several times and this methodology can be industrially adapted for the manufacturing of recycled products.
Related Results
Physico-Mechanical Behaviors of Chemically Treated Natural Fibers Reinforced Hybrid Polypropylene Composites
Physico-Mechanical Behaviors of Chemically Treated Natural Fibers Reinforced Hybrid Polypropylene Composites
The goal of current research is to replace synthetic materials with natural, biodegradable, and renewable ones. Natural fiber composites are extensively studied due to their unique...
Properties of Wood–Plastic Composites Manufactured from Two Different Wood Feedstocks: Wood Flour and Wood Pellets
Properties of Wood–Plastic Composites Manufactured from Two Different Wood Feedstocks: Wood Flour and Wood Pellets
Driven by the motive of minimizing the transportation costs of raw materials to manufacture wood–plastic composites (WPCs), Part I and the current Part II of this paper series expl...
Mechanical Properties of GF/CF Hybrid ABS Composite by DFFIM
Mechanical Properties of GF/CF Hybrid ABS Composite by DFFIM
GF reinforced polymer composites to improve the mechanical properties by increasing fiber content, but there is a limit. On the contrary, CF reinforced polymer composites are super...
Mechanical properties of biorenewable fiber/plastic composites
Mechanical properties of biorenewable fiber/plastic composites
AbstractPlastic fiber composites, consisting of polypropylene (PP) or polyethylene (PE), and pinewood, big blue stem (BBS), soybean hulls, or distillers dried grain and solubles (D...
Problems of the US Recycling Programs: What Experienced Recycling Program Managers Tell
Problems of the US Recycling Programs: What Experienced Recycling Program Managers Tell
Recycling is a cornerstone of waste management. Despite its significance and growing interest, the US recycling rate has stagnated at around 35% for more than the past decade. In t...
High performance bio-based composites : mechanical and environmental durability
High performance bio-based composites : mechanical and environmental durability
The presented work is a part of the ongoing effort on the development of high performance bio-based composites with enhanced durability, under static and dynamic mechanical loading...
Recent advancements in thermoplastic composite materials in aerospace industry
Recent advancements in thermoplastic composite materials in aerospace industry
It is a known fact that aerospace industry requires very strict requirements in terms of weight, material properties, and product lifetime performance. Therefore, composite materia...
Investigation on the Effect of Process Parameters on Mechanical Properties of Vetiver Fiber Reinforced LDPE Composites
Investigation on the Effect of Process Parameters on Mechanical Properties of Vetiver Fiber Reinforced LDPE Composites
Natural fibers (NFs) are extensively used for the ecological concern of synthetic fibers. The benefits of NFs over man-made fibers are their easy accessibility, renewability, light...


