Javascript must be enabled to continue!
Derivations on rank $k$ triangular matrices
View through CrossRef
Let $n\geqslant 2$ be an integer and let $T_n(\mathcal{R})$ be the algebra of $n\times n$ upper triangular matrices over a unital ring $\mathcal{R}$. In this paper, we characterize derivations $\psi:T_n(\mathcal{R})\rightarrow T_n(\mathcal{R})$ on strictly upper triangular matrices, i.e., additive maps $\psi$ satisfying $\psi(AB)=A\psi(B)+\psi(A)B$ for all strictly upper triangular matrices $A,B\in T_n(\mathcal{R})$. We then deduce this result a complete structural characterization of derivations $\psi:T_n(\mathcal{R})\rightarrow T_n(\mathcal{R})$ on rank $k$ upper triangular matrices, where $1\leqslant k\leqslant n$ is a fixed integer and $\mathcal{R}$ is a division ring.
University of Wyoming Libraries
Title: Derivations on rank $k$ triangular matrices
Description:
Let $n\geqslant 2$ be an integer and let $T_n(\mathcal{R})$ be the algebra of $n\times n$ upper triangular matrices over a unital ring $\mathcal{R}$.
In this paper, we characterize derivations $\psi:T_n(\mathcal{R})\rightarrow T_n(\mathcal{R})$ on strictly upper triangular matrices, i.
e.
, additive maps $\psi$ satisfying $\psi(AB)=A\psi(B)+\psi(A)B$ for all strictly upper triangular matrices $A,B\in T_n(\mathcal{R})$.
We then deduce this result a complete structural characterization of derivations $\psi:T_n(\mathcal{R})\rightarrow T_n(\mathcal{R})$ on rank $k$ upper triangular matrices, where $1\leqslant k\leqslant n$ is a fixed integer and $\mathcal{R}$ is a division ring.
Related Results
On t-derivations of PMS-algebras
On t-derivations of PMS-algebras
Background PMS algebras are a type of algebraic structure that has been studied extensively in recent years. They are a generalization of several other algebraic structures, such a...
Subespacios hiperinvariantes y característicos : una aproximación geométrica
Subespacios hiperinvariantes y característicos : una aproximación geométrica
The aim of this thesis is to study the hyperinvariant and characteristic subspaces of a matrix, or equivalently, of an endomorphism of a finite dimensional vector space. We restric...
Mòduls locals de sistemes dinàmics lineals amb coeficients constants
Mòduls locals de sistemes dinàmics lineals amb coeficients constants
La present memòria estudia l'estabilitat estructural de ternes de matrius. Es ben conegut que els sistemes dinàmic lineals amb coeficients constants poden venir definits per ternes...
Numerical Study on Rock-Breaking Mechanisms of Triangular-Shaped PDC Cutter
Numerical Study on Rock-Breaking Mechanisms of Triangular-Shaped PDC Cutter
ABSTRACT
Conventional PDC cutter usually gets broken when drilling into deep formations due to high hardness and strong abrasion. To help solve such a problem, tr...
Group Structures and Derivations on PMS-algebras
Group Structures and Derivations on PMS-algebras
Background PMS-algebras are a specific algebraic structure that generalizes a propositional algebra called BCK-algebra. This paper delves into the intricate group structure of thes...
Triangular cord sign and ultrasound features of the gall bladder in infants with biliary atresia
Triangular cord sign and ultrasound features of the gall bladder in infants with biliary atresia
SummaryThe aim of this study was to reassess the accuracy of the triangular cord sign, the triangular cord sign coupled with abnormal gall‐bladder length, and an irregular gall‐bla...
The Change of Basis Groupoid
The Change of Basis Groupoid
Change of basis in finite-dimensional vector spaces has numerous significant applications. This research explores the algebraic structure of change of basis matrices within a set o...
The Change of Basis Groupoid
The Change of Basis Groupoid
Change of basis in finite-dimensional vector spaces has numerous significant applications. This research explores the algebraic structure of change of basis matrices within a set o...

