Javascript must be enabled to continue!
Archaeal DNA Replication
View through CrossRef
DNA replication is essential for all life forms. Although the process is fundamentally conserved in the three domains of life, bioinformatic, biochemical, structural, and genetic studies have demonstrated that the process and the proteins involved in archaeal DNA replication are more similar to those in eukaryal DNA replication than in bacterial DNA replication, but have some archaeal-specific features. The archaeal replication system, however, is not monolithic, and there are some differences in the replication process between different species. In this review, the current knowledge of the mechanisms governing DNA replication in Archaea is summarized. The general features of the replication process as well as some of the differences are discussed.
Title: Archaeal DNA Replication
Description:
DNA replication is essential for all life forms.
Although the process is fundamentally conserved in the three domains of life, bioinformatic, biochemical, structural, and genetic studies have demonstrated that the process and the proteins involved in archaeal DNA replication are more similar to those in eukaryal DNA replication than in bacterial DNA replication, but have some archaeal-specific features.
The archaeal replication system, however, is not monolithic, and there are some differences in the replication process between different species.
In this review, the current knowledge of the mechanisms governing DNA replication in Archaea is summarized.
The general features of the replication process as well as some of the differences are discussed.
Related Results
Genome wide hypomethylation and youth-associated DNA gap reduction promoting DNA damage and senescence-associated pathogenesis
Genome wide hypomethylation and youth-associated DNA gap reduction promoting DNA damage and senescence-associated pathogenesis
Abstract
Background: Age-associated epigenetic alteration is the underlying cause of DNA damage in aging cells. Two types of youth-associated DNA-protection epigenetic mark...
Archaeal communities in natural and artificially restored mangrove sediments in Tieshan Bay, China
Archaeal communities in natural and artificially restored mangrove sediments in Tieshan Bay, China
Mangrove forests are crucial wetland ecosystems located in tropical and subtropical intertidal zones, but they have become extensively degraded. As a viable ecological restoration ...
Echinococcus granulosus in Environmental Samples: A Cross-Sectional Molecular Study
Echinococcus granulosus in Environmental Samples: A Cross-Sectional Molecular Study
Abstract
Introduction
Echinococcosis, caused by tapeworms of the Echinococcus genus, remains a significant zoonotic disease globally. The disease is particularly prevalent in areas...
SingleāMolecule Optical Replication Mapping (ORM) Suggests Human Replication Timing is Regulated by Stochastic Initiation
SingleāMolecule Optical Replication Mapping (ORM) Suggests Human Replication Timing is Regulated by Stochastic Initiation
DNA replication timing is regulated by the timing of initiation across the genome. However, there is no consensus as to how initiation timing is regulated. Deterministic models con...
Lipids of Archaeal Viruses
Lipids of Archaeal Viruses
Archaeal viruses represent one of the least known territory of the viral universe and even less is known about their lipids. Based on the current knowledge, however, it seems that,...
Werner syndrome protein (WRN) regulates cell proliferation and the human papillomavirus 16 life cycle during epithelial differentiation
Werner syndrome protein (WRN) regulates cell proliferation and the human papillomavirus 16 life cycle during epithelial differentiation
AbstractHuman papillomaviruses recruit a host of DNA damage response factors to their viral genome to facilitate homologous recombination replication in association with the viral ...
Identification of 1600 replication origins in S. cerevisiae
Identification of 1600 replication origins in S. cerevisiae
Abstract
There are approximately 500 known origins of replication in the yeast genome, and the process by which DNA replication initiates at these locations is well understood. In ...
Hepatitis C Virus Replication Depends on Endosomal Cholesterol Homeostasis
Hepatitis C Virus Replication Depends on Endosomal Cholesterol Homeostasis
ABSTRACT
Similar to other positive-strand RNA viruses, hepatitis C virus (HCV) causes massive rearrangements of intracellular membranes, resulting in a membranous web (MW...

