Javascript must be enabled to continue!
Evaluating and Improving Snow in the National Water Model, Using Observations from the New York State Mesonet
View through CrossRef
Abstract
This study leverages observations from the New York State Mesonet to evaluate and improve the representation of snow within the National Water Model (NWM) and its associated land surface model (Noah-MP). To do so, we run and analyze distributed NWM simulations, forced by gridded meteorological analyses, and Noah-MP point simulations, forced by New York State Mesonet (NYSM) observations. Distributed NWM runs, with a baseline configuration, show substantial SWE biases caused by biases in the meteorological forcing used, imperfect representation of snow processes, and mismatches between the land cover in the model and at NYSM station locations. Noah-MP point simulations, using the baseline configuration, reveal a systematic positive bias in SWE accumulation. Sensitivity experiments show that this bias can be mitigated by using an alternative precipitation phase partitioning method. Noah-MP point simulations, with improved precipitation phase partitioning, reveal a systematic negative bias in SWE ablation rates. Sensitivity experiments highlight uncertain parameters within Noah-MP that strongly affect ablation rates and show particularly large sensitivity to the snow albedo decay time-scale (TAU0) parameter, which modulates snow albedo decay rates. Reducing TAU0 improves ablation rates by reducing biases in surface albedo. Distributed NWM experiments, with precipitation phase partitioning and TAU0 adjusted based on Noah-MP point simulation results, show qualitatively similar sensitivities. However, the distributed experiments do not show clear improvements when compared to SWE and streamflow observations. This is likely due to some combination of the abovementioned sources of bias in the baseline-distributed run and (for streamflow) biases in other parameterized processes unrelated to snow in the NWM.
Significance Statement
Simulating snow on the ground is important for forecasting streamflow. This study compares snow simulations from a streamflow forecast model to observations from an advanced weather station network. Errors in simulated snow are caused by errors in the weather inputs to the model and errors in how the model represents complex physical processes. Some of these errors can be reduced by changing how the model classifies rain versus snow and how the model determines how much sunlight snow reflects. However, using these results to improve the forecast model is tricky, due to errors in the weather data inputs, errors in the representation of other complex processes, and differences between vegetation assumed in the model and that at the weather station locations.
American Meteorological Society
Title: Evaluating and Improving Snow in the National Water Model, Using Observations from the New York State Mesonet
Description:
Abstract
This study leverages observations from the New York State Mesonet to evaluate and improve the representation of snow within the National Water Model (NWM) and its associated land surface model (Noah-MP).
To do so, we run and analyze distributed NWM simulations, forced by gridded meteorological analyses, and Noah-MP point simulations, forced by New York State Mesonet (NYSM) observations.
Distributed NWM runs, with a baseline configuration, show substantial SWE biases caused by biases in the meteorological forcing used, imperfect representation of snow processes, and mismatches between the land cover in the model and at NYSM station locations.
Noah-MP point simulations, using the baseline configuration, reveal a systematic positive bias in SWE accumulation.
Sensitivity experiments show that this bias can be mitigated by using an alternative precipitation phase partitioning method.
Noah-MP point simulations, with improved precipitation phase partitioning, reveal a systematic negative bias in SWE ablation rates.
Sensitivity experiments highlight uncertain parameters within Noah-MP that strongly affect ablation rates and show particularly large sensitivity to the snow albedo decay time-scale (TAU0) parameter, which modulates snow albedo decay rates.
Reducing TAU0 improves ablation rates by reducing biases in surface albedo.
Distributed NWM experiments, with precipitation phase partitioning and TAU0 adjusted based on Noah-MP point simulation results, show qualitatively similar sensitivities.
However, the distributed experiments do not show clear improvements when compared to SWE and streamflow observations.
This is likely due to some combination of the abovementioned sources of bias in the baseline-distributed run and (for streamflow) biases in other parameterized processes unrelated to snow in the NWM.
Significance Statement
Simulating snow on the ground is important for forecasting streamflow.
This study compares snow simulations from a streamflow forecast model to observations from an advanced weather station network.
Errors in simulated snow are caused by errors in the weather inputs to the model and errors in how the model represents complex physical processes.
Some of these errors can be reduced by changing how the model classifies rain versus snow and how the model determines how much sunlight snow reflects.
However, using these results to improve the forecast model is tricky, due to errors in the weather data inputs, errors in the representation of other complex processes, and differences between vegetation assumed in the model and that at the weather station locations.
Related Results
Characteristics of Taiga and Tundra Snowpack in Development and Validation of Remote Sensing of Snow
Characteristics of Taiga and Tundra Snowpack in Development and Validation of Remote Sensing of Snow
Remote sensing of snow is a method to measure snow cover characteristics without direct physical contact with the target from airborne or space-borne platforms. Reliable estimates ...
Dynamic Snow Distribution Modeling using the Fokker-Planck Equation Approach
Dynamic Snow Distribution Modeling using the Fokker-Planck Equation Approach
<p>The Fokker-Planck equation (FPE) describes the time evolution of the distribution function of fluctuating macroscopic variables.&#160; Although the FPE was...
A snow reanalysis for Italy: IT-SNOW
A snow reanalysis for Italy: IT-SNOW
Quantifying the amount of snow deposited across the landscape at any given time is the main goal of snow hydrology. Yet, answering this apparently simple question is still elusive ...
The additive value of multi-scale remote sensing snow products for alpine above-snow Cosmic Ray Neutron Sensing
The additive value of multi-scale remote sensing snow products for alpine above-snow Cosmic Ray Neutron Sensing
Alpine snow cover is shaped by complex topography, wind and insulation patterns, causing strong lateral heterogeneity in snow water equivalent (SWE) within only a few meters distan...
Blowing snow in Antarctica and its contribution to the surface mass balance
Blowing snow in Antarctica and its contribution to the surface mass balance
<p>On the windiest, coldest and driest continent of the world, blowing snow is frequently active, especially during the winter months. Coastal regions with strong kat...
Snow Cover Distribution, Variability, and Response to Climate Change in Western China
Snow Cover Distribution, Variability, and Response to Climate Change in Western China
Abstract
A study is presented of the geographical distribution and spatial and temporal variabilities of the western China snow cover in the past 47 yr between 1951 ...
Benchmarking Snow Fields of ERA5-Land in the Northern Regions of North America
Benchmarking Snow Fields of ERA5-Land in the Northern Regions of North America
Abstract. Reanalysis products provide new opportunities for assessments of historical Earth System states. This is crucial for snow variables, where ground-based observations are s...
Assessment of Ku- and Ka-band Dual-Frequency Radar for Snow Estimates
Assessment of Ku- and Ka-band Dual-Frequency Radar for Snow Estimates
<p>Dual-frequency radars have been increasingly used for detecting and retrieving cloud and precipitation, such as the Ku- and Ka-band Dual-frequency Precipitation Ra...


