Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Nanomaterials for Electrochemical Immunosensing

View through CrossRef
Electrochemical immunosensors resulting from a combination of the traditional immunoassay approach with modern biosensors and electrochemical analysis constitute a current research hotspot. They exhibit both the high selectivity characteristics of immunoassays and the high sensitivity of electrochemical analysis, along with other merits such as small volume, convenience, low cost, simple preparation, and real-time on-line detection, and have been widely used in the fields of environmental monitoring, medical clinical trials and food analysis. Notably, the rapid development of nanotechnology and the wide application of nanomaterials have provided new opportunities for the development of high-performance electrochemical immunosensors. Various nanomaterials with different properties can effectively solve issues such as the immobilization of biological recognition molecules, enrichment and concentration of trace analytes, and signal detection and amplification to further enhance the stability and sensitivity of the electrochemical immunoassay procedure. This review introduces the working principles and development of electrochemical immunosensors based on different signals, along with new achievements and progress related to electrochemical immunosensors in various fields. The importance of various types of nanomaterials for improving the performance of electrochemical immunosensor is also reviewed to provide a theoretical basis and guidance for the further development and application of nanomaterials in electrochemical immunosensors.
Title: Nanomaterials for Electrochemical Immunosensing
Description:
Electrochemical immunosensors resulting from a combination of the traditional immunoassay approach with modern biosensors and electrochemical analysis constitute a current research hotspot.
They exhibit both the high selectivity characteristics of immunoassays and the high sensitivity of electrochemical analysis, along with other merits such as small volume, convenience, low cost, simple preparation, and real-time on-line detection, and have been widely used in the fields of environmental monitoring, medical clinical trials and food analysis.
Notably, the rapid development of nanotechnology and the wide application of nanomaterials have provided new opportunities for the development of high-performance electrochemical immunosensors.
Various nanomaterials with different properties can effectively solve issues such as the immobilization of biological recognition molecules, enrichment and concentration of trace analytes, and signal detection and amplification to further enhance the stability and sensitivity of the electrochemical immunoassay procedure.
This review introduces the working principles and development of electrochemical immunosensors based on different signals, along with new achievements and progress related to electrochemical immunosensors in various fields.
The importance of various types of nanomaterials for improving the performance of electrochemical immunosensor is also reviewed to provide a theoretical basis and guidance for the further development and application of nanomaterials in electrochemical immunosensors.

Related Results

Electrochemical Sensor under Nanostructured Materials
Electrochemical Sensor under Nanostructured Materials
In order to study the electrochemical sensor of nanometer mechanism materials to realize the high sensitive detection of different chemical molecules, in this research, the prepara...
Advances of hafnium based nanomaterials for cancer theranostics
Advances of hafnium based nanomaterials for cancer theranostics
Hafnium-based nanomaterials (Hf-NMs) have attracted the interest of numerous biomedical researchers by their unique properties. Recent years have witnessed significant advancements...
Piezo-electrochemical coupling of AgNbO3 piezoelectric nanomaterials
Piezo-electrochemical coupling of AgNbO3 piezoelectric nanomaterials
In this work, the AgNbO3 piezoelectric nanomaterials are hydrothermally synthesized, and they have an average particle size of~1 m, which is obtained from scanning electron microsc...
Systems Toxicological Approach to the Risk Assessment of Nanomaterials
Systems Toxicological Approach to the Risk Assessment of Nanomaterials
AbstractNowadays, nanomaterials have come into the spotlight as new materials that have lots of prominent benefits in various fields of human life. Risk assessment of the nanomater...
Advanced Biomimetic Nanomaterials for Non-invasive Disease Diagnosis
Advanced Biomimetic Nanomaterials for Non-invasive Disease Diagnosis
In modern society, the incidence of cancer, inflammatory diseases, nervous system diseases, metabolic diseases, and cardiovascular diseases is on the rise. These diseases not only ...
Visualization of Inhomogeneuous Reactivity on Battery Material Using Scanning Electrochemical Cell Microscopy
Visualization of Inhomogeneuous Reactivity on Battery Material Using Scanning Electrochemical Cell Microscopy
To understand the metal oxide coating effect on battery performance, the following two techniques are required: 1) constructing a flat thin-film electrode surface to realize a well...
Redox Reaction on the Surface/Edge Strturtures of Graphene/Graphite
Redox Reaction on the Surface/Edge Strturtures of Graphene/Graphite
Graphene, a single atomic layer of graphite, has been widely studied because of its unique electrical, optical, electrochemical, and elastic properties. With respect to the electro...

Back to Top