Javascript must be enabled to continue!
Research on the Carbon Sequestration Capacity of Forest Ecological Network Topological Features and Network Optimization Based on Modification Recognition in the Yellow River Basin Mining Area: A Case Study of Jincheng City
View through CrossRef
Forests are vital for terrestrial ecosystems, providing crucial functions like carbon sequestration and water conservation. In the Yellow River Basin, where 70% of forest coverage is concentrated in the middle reaches encompassing Sichuan, Shaanxi, and Shanxi provinces, there exists significant potential for coal production, with nine planned coal bases. This study centered on Jincheng City, Shanxi Province, a representative coal mining area in the Yellow River Basin, and combined the MSPA analysis method and MCR model to generate the five-period forest ecological network of Jincheng City from 1985 to 2022 under the background of coal mining and calculate the degree centrality, closeness centrality, betweenness centrality, and eigenvector centrality; the correlation between the four centralities and carbon sequestration ability is further explored. Simultaneously, employing the RAND-ESU algorithm for motif identification within forest ecological networks, this study integrates the ecological policies of the research area with the specific conditions of the coal mining region to optimize the forest ecological network in Jincheng City. Findings reveal the following. (1) Forest ecological spatial networks: Forest ecological networks exhibit robust overall ecological connectivity in the study area, with potential ecological corridors spanning the region. However, certain areas with high ecological resistance hinder connectivity between key forest ecological nodes under the background of coal mining. (2) Correlation between topological indices and carbon sequestration ecological services: From 1985 to 2022, the carbon sequestration capacity of Jincheng City’s forest source areas increased year by year, and significant positive correlations were observed between degree centrality, betweenness centrality, eigenvector centrality with carbon sequestration ecological services, indicating a strengthening trend over time. (3) Motif Recognition and Ecological Network Optimization: During the study, four types of motifs were identified in the forest ecological network of Jincheng City based on the number of nodes and their connections using the RAND-ESU network motif algorithm. These motifs are 3a, 4a, 4b, and 4d (where the number represents the number of nodes and the letter represents the connection type). Among these, motifs 3a and 4b play a crucial role. Based on these motifs and practical considerations, network optimization was performed on the existing ecological source areas to enhance the robustness of the forest ecological network.
Title: Research on the Carbon Sequestration Capacity of Forest Ecological Network Topological Features and Network Optimization Based on Modification Recognition in the Yellow River Basin Mining Area: A Case Study of Jincheng City
Description:
Forests are vital for terrestrial ecosystems, providing crucial functions like carbon sequestration and water conservation.
In the Yellow River Basin, where 70% of forest coverage is concentrated in the middle reaches encompassing Sichuan, Shaanxi, and Shanxi provinces, there exists significant potential for coal production, with nine planned coal bases.
This study centered on Jincheng City, Shanxi Province, a representative coal mining area in the Yellow River Basin, and combined the MSPA analysis method and MCR model to generate the five-period forest ecological network of Jincheng City from 1985 to 2022 under the background of coal mining and calculate the degree centrality, closeness centrality, betweenness centrality, and eigenvector centrality; the correlation between the four centralities and carbon sequestration ability is further explored.
Simultaneously, employing the RAND-ESU algorithm for motif identification within forest ecological networks, this study integrates the ecological policies of the research area with the specific conditions of the coal mining region to optimize the forest ecological network in Jincheng City.
Findings reveal the following.
(1) Forest ecological spatial networks: Forest ecological networks exhibit robust overall ecological connectivity in the study area, with potential ecological corridors spanning the region.
However, certain areas with high ecological resistance hinder connectivity between key forest ecological nodes under the background of coal mining.
(2) Correlation between topological indices and carbon sequestration ecological services: From 1985 to 2022, the carbon sequestration capacity of Jincheng City’s forest source areas increased year by year, and significant positive correlations were observed between degree centrality, betweenness centrality, eigenvector centrality with carbon sequestration ecological services, indicating a strengthening trend over time.
(3) Motif Recognition and Ecological Network Optimization: During the study, four types of motifs were identified in the forest ecological network of Jincheng City based on the number of nodes and their connections using the RAND-ESU network motif algorithm.
These motifs are 3a, 4a, 4b, and 4d (where the number represents the number of nodes and the letter represents the connection type).
Among these, motifs 3a and 4b play a crucial role.
Based on these motifs and practical considerations, network optimization was performed on the existing ecological source areas to enhance the robustness of the forest ecological network.
Related Results
Study on the Ecological Carrying Capacity and Driving Factors of the Source Region of the Yellow River in China in the Past 30 Years
Study on the Ecological Carrying Capacity and Driving Factors of the Source Region of the Yellow River in China in the Past 30 Years
Abstract
Under the influence of natural factors and human activities, the ecological environment functions in the source region of the Yellow River in China have been degra...
Study on Forest and Grassland Ecological Space Structure in Eyu Mining Area and Potential Alternatives for Enhancing Carbon Sequestration
Study on Forest and Grassland Ecological Space Structure in Eyu Mining Area and Potential Alternatives for Enhancing Carbon Sequestration
Optimizing the connectivity-carbon sequestration coupling coordination of forest and grassland ecological spaces (F&GES) is a crucial measure to enhance carbon sequestration ef...
Forest Structure and Potential of Carbon Storage at Khao Nam Sab, Kasetsart University, Sri Racha Campus, Chonburi Province
Forest Structure and Potential of Carbon Storage at Khao Nam Sab, Kasetsart University, Sri Racha Campus, Chonburi Province
Background and Objectives: Tropical Forest ecosystems are globally significant for their roles in biodiversity conservation, climate regulation, and carbon sequestration. In Thaila...
Hydatid Disease of The Brain Parenchyma: A Systematic Review
Hydatid Disease of The Brain Parenchyma: A Systematic Review
Abstarct
Introduction
Isolated brain hydatid disease (BHD) is an extremely rare form of echinococcosis. A prompt and timely diagnosis is a crucial step in disease management. This ...
Sustaining the Pearl River: Problems, Chanllenges, and Opportunities
Sustaining the Pearl River: Problems, Chanllenges, and Opportunities
The Pearl River is a large water system, which is the second largest river (in terms of mean annual water discharge) in China. The Pearl River Basin consists of three major rivers,...
Simulating carbon sequestration using cellular automata and land use assessment for Karaj, Iran
Simulating carbon sequestration using cellular automata and land use assessment for Karaj, Iran
Abstract. Carbon sequestration has been proposed as a means of slowing the atmospheric and marine accumulation of greenhouse gases. This study used observed and simulated land use/...
Recent Legal Developments in Carbon Sequestration
Recent Legal Developments in Carbon Sequestration
Abstract
Carbon sequestration is the process of capturing carbon dioxide ("CO2") emissions, which would otherwise be released into the atmosphere, and permanently st...
Assessing the Forest Management Impact on Forest Carbon Dynamics in Romanian Forests
Assessing the Forest Management Impact on Forest Carbon Dynamics in Romanian Forests
Forests play a crucial role in the EU's strategy for decarbonisation and in achieving neutrality targets, primarily through their capacity for carbon sequestration (carbon stock ch...


