Javascript must be enabled to continue!
Directed robust generation of functional retinal ganglion cells from Müller glia
View through CrossRef
AbstractGlaucoma and optic neuropathies cause progressive and irreversible degeneration of retinal ganglion cells (RGCs) and the optic nerve and are currently without any effective treatment. Previous research into cell replacement therapy of these neurodegenerative diseases has been stalled due to the limited capability for grafted RGCs to integrate into the retina and project properly along the long visual pathway to reach their brain targets. In vivo RGC regeneration would be a promising alternative approach but mammalian retinas lack regenerative capacity even though cold-blood vertebrates such as zebrafish have the full capacity to regenerate a damaged retina using Müller glia (MG) as retinal stem cells. Nevertheless, mammalian MG undergo limited neurogenesis when stimulated by retinal injury. Therefore, a fundamental question that remains to be answered is whether MG can be induced to efficiently regenerate functional RGCs for vision restoration in mammals. Here we show that without stimulating proliferation, the transcription factor (TF) Math5 together with a Brn3 TF family member are able to reprogram mature mouse MG into RGCs with exceedingly high efficiency while either alone has no or limited capacity. The reprogrammed RGCs extend long axons that make appropriate intra-retinal and extra-retinal projections through the entire visual pathway including the optic nerve, optic chiasm and optic tract to innervate both image-forming and non-image-forming brain targets. They exhibit typical neuronal electrophysiological properties and improve visual responses in two glaucoma mouse models:Brn3bnull mutant mice and mice with the optic nerve crushed (ONC). Together, our data provide evidence that mammalian MG can be reprogrammed by defined TFs to achieve robust in vivo regeneration of functional RGCs as well as a promising new therapeutic approach to restore vision to patients with glaucoma and other optic neuropathies.
Cold Spring Harbor Laboratory
Title: Directed robust generation of functional retinal ganglion cells from Müller glia
Description:
AbstractGlaucoma and optic neuropathies cause progressive and irreversible degeneration of retinal ganglion cells (RGCs) and the optic nerve and are currently without any effective treatment.
Previous research into cell replacement therapy of these neurodegenerative diseases has been stalled due to the limited capability for grafted RGCs to integrate into the retina and project properly along the long visual pathway to reach their brain targets.
In vivo RGC regeneration would be a promising alternative approach but mammalian retinas lack regenerative capacity even though cold-blood vertebrates such as zebrafish have the full capacity to regenerate a damaged retina using Müller glia (MG) as retinal stem cells.
Nevertheless, mammalian MG undergo limited neurogenesis when stimulated by retinal injury.
Therefore, a fundamental question that remains to be answered is whether MG can be induced to efficiently regenerate functional RGCs for vision restoration in mammals.
Here we show that without stimulating proliferation, the transcription factor (TF) Math5 together with a Brn3 TF family member are able to reprogram mature mouse MG into RGCs with exceedingly high efficiency while either alone has no or limited capacity.
The reprogrammed RGCs extend long axons that make appropriate intra-retinal and extra-retinal projections through the entire visual pathway including the optic nerve, optic chiasm and optic tract to innervate both image-forming and non-image-forming brain targets.
They exhibit typical neuronal electrophysiological properties and improve visual responses in two glaucoma mouse models:Brn3bnull mutant mice and mice with the optic nerve crushed (ONC).
Together, our data provide evidence that mammalian MG can be reprogrammed by defined TFs to achieve robust in vivo regeneration of functional RGCs as well as a promising new therapeutic approach to restore vision to patients with glaucoma and other optic neuropathies.
Related Results
Reggie-1 and reggie-2, two cell surface proteins expressed by retinal ganglion cells during axon regeneration
Reggie-1 and reggie-2, two cell surface proteins expressed by retinal ganglion cells during axon regeneration
ABSTRACT
Fish – in contrast to mammals – regenerate retinal ganglion cell axons when the optic nerve is severed. Optic nerve injury leads to reexpression of proteins...
Efficacy of Toluidine Blue Staining in Rectal Biopsy with Patients of Hirschsprung Disease
Efficacy of Toluidine Blue Staining in Rectal Biopsy with Patients of Hirschsprung Disease
Background: The diagnosis of Hirschsprung disease (HD) is dependent on the histological study of rectal biopsy for ganglion cells and nerve fibers. Hematoxylin and Eosin (H&E) ...
Rat retinal müller cells express Thy‐1 following neuronal cell death
Rat retinal müller cells express Thy‐1 following neuronal cell death
AbstractIn the normal rat retina the Thy‐1 antigen is a specific marker of ganglion cells, but degeneration of ganglion cells in vivo does not remove completely the expression of T...
Pathophysiology of Neurodegeneration in Retinal Diseases as Glaucoma and Diabetic Retinopathy and Potential Mechanisms of Retinal Neuroprotection
Pathophysiology of Neurodegeneration in Retinal Diseases as Glaucoma and Diabetic Retinopathy and Potential Mechanisms of Retinal Neuroprotection
Retinal cell neurodegeneration relates to glaucoma, diabetic retinopathy, age-related macular degeneration, and retinitis pigmentosa. Early stages of such disease are preceded by r...
Cell-Based Neuroprotection of Retinal Ganglion Cells in Animal Models of Optic Neuropathies
Cell-Based Neuroprotection of Retinal Ganglion Cells in Animal Models of Optic Neuropathies
Retinal ganglion cells (RGCs) comprise a heterogenous group of projection neurons that transmit visual information from the retina to the brain. Progressive degeneration of these c...
e0392 Relationship between retinal vasculopathy and coronary artery disease
e0392 Relationship between retinal vasculopathy and coronary artery disease
Background and objective
Studies showed that atherosclerosis is a systemic disease. Parameters representing peripheral artery atherosclerosis, such as decreased a...
NG2‐glia crosstalk with microglia in health and disease
NG2‐glia crosstalk with microglia in health and disease
AbstractNeurodegenerative diseases are increasingly becoming a global problem. However, the pathological mechanisms underlying neurodegenerative diseases are not fully understood. ...
Central retinal area is not the site where ganglion cells are generated first
Central retinal area is not the site where ganglion cells are generated first
AbstractThe development of retinal ganglion cells (RGC) was studied in the chick from stage 18 to adulthood. Our main objectives were to identify the retinal site where the first R...

