Javascript must be enabled to continue!
Deep Learning-Based Malware Detection and Classification
View through CrossRef
Malware analysis is an important aspect of cyber security and is a key component in securing systems from attackers. New malware signatures are being created continuously and detection techniques need to keep pace with them. The primary objective is to propose a solution which detects malicious files in real time by evaluating each file. Other objectives are to assess the threat level of the malware and recognize the family of malicious file. Hence, to cover all the needs and to fulfill the motivation, a deep neural network is more suitable to detect and classify the malware. Convolutional neural network-based system MalNet-D is designed to detect the presence of malware, and subsequently, to classify the detected malware into the family in which it belongs, a variation of MalNet-D termed as MalNet-C is proposed. Images of the executable files, both malign and benign, are used as input data, which is trained by the respective MalNet. This is used to detect and classify malware into families. The system achieved 93% accuracy in malware detection and 96% accuracy in malware classification.
Title: Deep Learning-Based Malware Detection and Classification
Description:
Malware analysis is an important aspect of cyber security and is a key component in securing systems from attackers.
New malware signatures are being created continuously and detection techniques need to keep pace with them.
The primary objective is to propose a solution which detects malicious files in real time by evaluating each file.
Other objectives are to assess the threat level of the malware and recognize the family of malicious file.
Hence, to cover all the needs and to fulfill the motivation, a deep neural network is more suitable to detect and classify the malware.
Convolutional neural network-based system MalNet-D is designed to detect the presence of malware, and subsequently, to classify the detected malware into the family in which it belongs, a variation of MalNet-D termed as MalNet-C is proposed.
Images of the executable files, both malign and benign, are used as input data, which is trained by the respective MalNet.
This is used to detect and classify malware into families.
The system achieved 93% accuracy in malware detection and 96% accuracy in malware classification.
Related Results
An optimal deep learning-based framework for the detection and classification of android malware
An optimal deep learning-based framework for the detection and classification of android malware
The use of smartphones is increasing rapidly and the malicious intrusions associated with it have become a challenging task that needs to be resolved. A secure and effective techn...
AndroDex: Android Dex Images of Obfuscated Malware
AndroDex: Android Dex Images of Obfuscated Malware
AbstractWith the emergence of technology and the usage of a large number of smart devices, cyber threats are increasing. Therefore, research studies have shifted their attention to...
HYBRID DEEP LEARNING EFFECTIVENESS OF IMAGE-BASED MALWARE DETECTION
HYBRID DEEP LEARNING EFFECTIVENESS OF IMAGE-BASED MALWARE DETECTION
The current high rate of malware variant production each day produces hundreds of thousands of new variants making signature detection methods ineffective. Deep learning patterns s...
A Novel Deep Learning Framework for IoT Malware Classification Integrating Feature Fusion and Attention Mechanisms
A Novel Deep Learning Framework for IoT Malware Classification Integrating Feature Fusion and Attention Mechanisms
The detection of malware attacks remains a significant challenge due rapid increase in variety of malicious files. An efficient system is crucial to ensure robust malware protectio...
Windows PE Malware Detection Using Ensemble Learning
Windows PE Malware Detection Using Ensemble Learning
In this Internet age, there are increasingly many threats to the security and safety of users daily. One of such threats is malicious software otherwise known as malware (ransomwar...
AMalLSTM: ANDROID MALWARE DETECTION USING LSTM
AMalLSTM: ANDROID MALWARE DETECTION USING LSTM
Android smartphone apps are becoming increasingly popular, but their security is a concern. Malware can cause damage to mobile devices and servers. Developing detection technologie...
Deteksi Malware Statis Menggunakan Deep Neural Networks Pada Portable Executable
Deteksi Malware Statis Menggunakan Deep Neural Networks Pada Portable Executable
Latar Belakang: Dua komponen utama pada analisismalware adalah analisis malware statis yang melibatkan pemeriksaan struktur dasar malware yang dapat dieksekusi tanpa mengeksekusiny...
Analisis Karakteristik Antivirus Berdasarkan Aktivitas Malware menggunakan Analisis Dinamis
Analisis Karakteristik Antivirus Berdasarkan Aktivitas Malware menggunakan Analisis Dinamis
Malware, short for “Malicious Software”, is a program specifically designed to perform an activity that can harm software on a victim's device. Examples of commonly found malware i...

