Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Mechanisms of GABAergic Homeostatic Plasticity

View through CrossRef
Homeostatic plasticity ensures that appropriate levels of activity are maintained through compensatory adjustments in synaptic strength and cellular excitability. For instance, excitatory glutamatergic synapses are strengthened following activity blockade and weakened following increases in spiking activity. This form of plasticity has been described in a wide array of networks at several different stages of development, but most work and reviews have focussed on the excitatory inputs of excitatory neurons. Here we review homeostatic plasticity of GABAergic neurons and their synaptic connections. We propose a simplistic model for homeostatic plasticity of GABAergic components of the circuitry (GABAergic synapses onto excitatory neurons, excitatory connections onto GABAergic neurons, cellular excitability of GABAergic neurons): following chronic activity blockade there is a weakening of GABAergic inhibition, and following chronic increases in network activity there is a strengthening of GABAergic inhibition. Previous work on GABAergic homeostatic plasticity supports certain aspects of the model, but it is clear that the model cannot fully account for some results which do not appear to fit any simplistic rule. We consider potential reasons for these discrepancies.
Title: Mechanisms of GABAergic Homeostatic Plasticity
Description:
Homeostatic plasticity ensures that appropriate levels of activity are maintained through compensatory adjustments in synaptic strength and cellular excitability.
For instance, excitatory glutamatergic synapses are strengthened following activity blockade and weakened following increases in spiking activity.
This form of plasticity has been described in a wide array of networks at several different stages of development, but most work and reviews have focussed on the excitatory inputs of excitatory neurons.
Here we review homeostatic plasticity of GABAergic neurons and their synaptic connections.
We propose a simplistic model for homeostatic plasticity of GABAergic components of the circuitry (GABAergic synapses onto excitatory neurons, excitatory connections onto GABAergic neurons, cellular excitability of GABAergic neurons): following chronic activity blockade there is a weakening of GABAergic inhibition, and following chronic increases in network activity there is a strengthening of GABAergic inhibition.
Previous work on GABAergic homeostatic plasticity supports certain aspects of the model, but it is clear that the model cannot fully account for some results which do not appear to fit any simplistic rule.
We consider potential reasons for these discrepancies.

Related Results

A postsynaptic signaling system for the regulation of homeostatic synaptic plasticity
A postsynaptic signaling system for the regulation of homeostatic synaptic plasticity
<p>Synapses undergo many stresses and plastic changes throughout the life of an organism. Homeostatic mechanisms respond to these stresses and maintain synaptic activity with...
Arousal-State Dependent Alterations in VTA-GABAergic Neural Activity
Arousal-State Dependent Alterations in VTA-GABAergic Neural Activity
AbstractDecades of research have implicated the ventral tegmental area (VTA) in motivation, reinforcement learning and reward processing. We and others recently demonstrated that i...
The reversibility and limits of homeostatic synaptic plasticity
The reversibility and limits of homeostatic synaptic plasticity
<p>To experience the world, we depend on the ability of our brains to process information. Problems can occur when communication between neurons is not regulated, and a signi...
Developmental Formation of the GABAergic and Glycinergic Networks in the Mouse Spinal Cord
Developmental Formation of the GABAergic and Glycinergic Networks in the Mouse Spinal Cord
Gamma-aminobutyric acid (GABA) and glycine act as inhibitory neurotransmitters. Three types of inhibitory neurons and terminals, GABAergic, GABA/glycine coreleasing, and glycinergi...
Developmental Formation of the GABAergic and Glycinergic Networks in the Mouse Spinal Cord
Developmental Formation of the GABAergic and Glycinergic Networks in the Mouse Spinal Cord
Gamma-aminobutyric acid (GABA) and glycine act as inhibitory neurotransmitters. Three types of inhibitory neurons and terminals, GABAergic, GABA/glycine co-releasing, and glycinerg...
Reproductive plasticity in both sexes interacts to determine mating behaviour and fecundity
Reproductive plasticity in both sexes interacts to determine mating behaviour and fecundity
AbstractOrganisms alter their phenotype in response to variation in their environment by expressing phenotypic plasticity. Both sexes exhibit such plasticity in response to contras...
fects of early drought-induced phenotypic plasticity on late plant seedling interactions
fects of early drought-induced phenotypic plasticity on late plant seedling interactions
Abstract In nature, plants are often exposed to a variety of environments. The study of plant phenotypic plasticity cannot ignore a variety of environmental factors. At pre...

Back to Top