Javascript must be enabled to continue!
Role and significance of SIRT1 in regulating the LPS-activated pyroptosis pathway in children with congenital hydronephrosis
View through CrossRef
Objective
To explore the characteristics and mechanism of sirtuin 1 (SIRT1) in lipopolysaccharide (LPS)-activated pyroptosis in the renal tissue of children with congenital hydronephrosis (CHn).
Methods
We detected the expression characteristics and clinical significance of SIRT1 and pyroptosis pathway proteins in CHn renal tissues by immunohistochemistry. The degree of renal fibrosis was detected by Masson staining. The human renal tubular epithelial cell line (HK-2) was cultured in vitro and treated with LPS (1 µg/mL), the SIRT1-specific agonist SRT1720 (2.5 µmol/L) and small interfering RNA (siRNA)-SIRT1 for 48 hours. After 48 hours, Cell Counting Kit-8 was used to detect the changes in cell proliferation ability, and ELISA was used to detect the changes in the expression of interleukin (IL)-1β and IL-18 in the cell supernatant. Real-time PCR (quantitative RT-PCR) and western blot analysis were used to detect the expression of SIRT1, caspase-1, caspase-4, NOD-like receptor thermal protein domain associated protein 3(NLRP3), and cleaved gasdermin D (GSDMD) in each group.
Results
Serum inflammatory cytokines were significantly elevated in 13 children with CHn with urinary tract infection, mainly caused by Gram-negative bacteria. Severe renal fibrosis occurred in children with CHn. Compared with the control group, the expression of SIRT1 in CHn kidney tissues was decreased, and the expression of caspase-4 and GSDMD was increased. LPS inhibited the expression of SIRT1 in HK-2 cells, promoted the expression of caspase-1, caspase-4, NLRP3, cleaved GSDMD, promoted the expression of IL-1β and IL-18 in the supernatant, and promoted pyroptosis in HK-2 cells. SRT1720 can inhibit LPS-activated pyroptosis by promoting SIRT1 expression, while siRNA-SIRT1 can further aggravate LPS-activated pyroptosis after inhibiting SIRT1 expression.
Conclusions
LPS can promote the inflammatory response in children with CHn by activating non-canonical pyroptosis and inhibiting SIRT1 expression. Promoting SIRT1 expression can inhibit pyroptosis of renal tubular epithelial cells, reduce the release of IL-18 and IL-1β, and alleviate the progression of renal fibrosis in children with CHn.
Title: Role and significance of SIRT1 in regulating the LPS-activated pyroptosis pathway in children with congenital hydronephrosis
Description:
Objective
To explore the characteristics and mechanism of sirtuin 1 (SIRT1) in lipopolysaccharide (LPS)-activated pyroptosis in the renal tissue of children with congenital hydronephrosis (CHn).
Methods
We detected the expression characteristics and clinical significance of SIRT1 and pyroptosis pathway proteins in CHn renal tissues by immunohistochemistry.
The degree of renal fibrosis was detected by Masson staining.
The human renal tubular epithelial cell line (HK-2) was cultured in vitro and treated with LPS (1 µg/mL), the SIRT1-specific agonist SRT1720 (2.
5 µmol/L) and small interfering RNA (siRNA)-SIRT1 for 48 hours.
After 48 hours, Cell Counting Kit-8 was used to detect the changes in cell proliferation ability, and ELISA was used to detect the changes in the expression of interleukin (IL)-1β and IL-18 in the cell supernatant.
Real-time PCR (quantitative RT-PCR) and western blot analysis were used to detect the expression of SIRT1, caspase-1, caspase-4, NOD-like receptor thermal protein domain associated protein 3(NLRP3), and cleaved gasdermin D (GSDMD) in each group.
Results
Serum inflammatory cytokines were significantly elevated in 13 children with CHn with urinary tract infection, mainly caused by Gram-negative bacteria.
Severe renal fibrosis occurred in children with CHn.
Compared with the control group, the expression of SIRT1 in CHn kidney tissues was decreased, and the expression of caspase-4 and GSDMD was increased.
LPS inhibited the expression of SIRT1 in HK-2 cells, promoted the expression of caspase-1, caspase-4, NLRP3, cleaved GSDMD, promoted the expression of IL-1β and IL-18 in the supernatant, and promoted pyroptosis in HK-2 cells.
SRT1720 can inhibit LPS-activated pyroptosis by promoting SIRT1 expression, while siRNA-SIRT1 can further aggravate LPS-activated pyroptosis after inhibiting SIRT1 expression.
Conclusions
LPS can promote the inflammatory response in children with CHn by activating non-canonical pyroptosis and inhibiting SIRT1 expression.
Promoting SIRT1 expression can inhibit pyroptosis of renal tubular epithelial cells, reduce the release of IL-18 and IL-1β, and alleviate the progression of renal fibrosis in children with CHn.
Related Results
PSIX-19 Leucine supplementation alters immune responses and blood metabolites of lambs exposed to endotoxin
PSIX-19 Leucine supplementation alters immune responses and blood metabolites of lambs exposed to endotoxin
Abstract
This study evaluated effects of supplemental Leu on immune responses and blood metabolites of 29 wether lambs (43.8±10.7 kg) exposed to lipopolysaccharide (...
Sirt1 in focus: unveiling molecular insights and therapeutic prospects in calcific aortic stenosis with sglt2i inhibitors
Sirt1 in focus: unveiling molecular insights and therapeutic prospects in calcific aortic stenosis with sglt2i inhibitors
Abstract
Funding Acknowledgements
Type of funding sources: Foundation. Main funding source(s): Fondazione Gigi & Pupa Ferrar...
HMGB1 mediates lipopolysaccharide-induced macrophage autophagy and pyroptosis
HMGB1 mediates lipopolysaccharide-induced macrophage autophagy and pyroptosis
Abstract
Autophagy and pyroptosis of macrophages play important protective or detrimental roles in sepsis. However, the underlying mechanisms remain unclear. High mobility ...
PBX1-SIRT1 positive feedback loop attenuates ROS-mediated HF- MSC senescence and apoptosis
PBX1-SIRT1 positive feedback loop attenuates ROS-mediated HF- MSC senescence and apoptosis
Abstract
Background: Stem cell senescence and depletion are major causes of organismal aging and aging-related diseases. The NAD–SIRT1–PARP1 axis has garnered remarkable in...
SIRT1 regulates hypoxia-induced oxidative stress in cardiomyocytes via
PI3K/MTOR signaling
SIRT1 regulates hypoxia-induced oxidative stress in cardiomyocytes via
PI3K/MTOR signaling
This work was developed to investigate the activation of silent information regulator 1 (SIRT1) to
regulate hypoxia-induced oxidative stress in cardiomyocytes through the PI3K/MTOR...
NQO1 binds and supports SIRT1 function
NQO1 binds and supports SIRT1 function
AbstractSilent information regulator 2-related enzyme 1 (SIRT1) is an NAD+-dependent class III deacetylase and a key component of the cellular metabolic sensing pathway. The requir...
Pan-Cancer Analyses of Pyroptosis With Functional Implications in Prognosis and Immunotherapy in Cancer
Pan-Cancer Analyses of Pyroptosis With Functional Implications in Prognosis and Immunotherapy in Cancer
Abstract
Background
Programmed cell death is an active and orderly form of cell death regulated by intracellular genes, which plays an important role in the normal occurre...
SIRT1 is transcriptionally repressed by YY1 and suppresses ferroptosis in rheumatoid arthritis
SIRT1 is transcriptionally repressed by YY1 and suppresses ferroptosis in rheumatoid arthritis
Abstract
Background
Sirtuin 1 (SIRT1) is reported downregulated in rheumatoid arthritis (RA), and the protective effects of SIRT1 on tissue damage a...


