Javascript must be enabled to continue!
Simulating the thermal regime and thaw processes of ice-rich permafrost ground with the land-surface model CryoGrid 3
View through CrossRef
Abstract. Thawing of permafrost in a warming climate is governed by a complex interplay of different processes of which only conductive heat transfer is taken into account in most model studies. However, observations in many permafrost landscapes demonstrate that lateral and vertical movement of water can have a pronounced influence on the thaw trajectories, creating distinct landforms, such as thermokarst ponds and lakes, even in areas where permafrost is otherwise thermally stable. Novel process parameterizations are required to include such phenomena in future projections of permafrost thaw and subsequent climatic-triggered feedbacks. In this study, we present a new land-surface scheme designed for permafrost applications, CryoGrid 3, which constitutes a flexible platform to explore new parameterizations for a range of permafrost processes. We document the model physics and employed parameterizations for the basis module CryoGrid 3, and compare model results with in situ observations of surface energy balance, surface temperatures, and ground thermal regime from the Samoylov permafrost observatory in NE Siberia. The comparison suggests that CryoGrid 3 can not only model the evolution of the ground thermal regime in the last decade, but also consistently reproduce the chain of energy transfer processes from the atmosphere to the ground. In addition, we demonstrate a simple 1-D parameterization for thaw processes in permafrost areas rich in ground ice, which can phenomenologically reproduce both formation of thermokarst ponds and subsidence of the ground following thawing of ice-rich subsurface layers. Long-term simulation from 1901 to 2100 driven by reanalysis data and climate model output demonstrate that the hydrological regime can both accelerate and delay permafrost thawing. If meltwater from thawed ice-rich layers can drain, the ground subsides, as well as the formation of a talik, are delayed. If the meltwater pools at the surface, a pond is formed that enhances heat transfer in the ground and leads to the formation of a talik. The model results suggest that the trajectories of future permafrost thaw are strongly influenced by the cryostratigraphy, as determined by the late Quaternary history of a site.
Title: Simulating the thermal regime and thaw processes of ice-rich permafrost ground with the land-surface model CryoGrid 3
Description:
Abstract.
Thawing of permafrost in a warming climate is governed by a complex interplay of different processes of which only conductive heat transfer is taken into account in most model studies.
However, observations in many permafrost landscapes demonstrate that lateral and vertical movement of water can have a pronounced influence on the thaw trajectories, creating distinct landforms, such as thermokarst ponds and lakes, even in areas where permafrost is otherwise thermally stable.
Novel process parameterizations are required to include such phenomena in future projections of permafrost thaw and subsequent climatic-triggered feedbacks.
In this study, we present a new land-surface scheme designed for permafrost applications, CryoGrid 3, which constitutes a flexible platform to explore new parameterizations for a range of permafrost processes.
We document the model physics and employed parameterizations for the basis module CryoGrid 3, and compare model results with in situ observations of surface energy balance, surface temperatures, and ground thermal regime from the Samoylov permafrost observatory in NE Siberia.
The comparison suggests that CryoGrid 3 can not only model the evolution of the ground thermal regime in the last decade, but also consistently reproduce the chain of energy transfer processes from the atmosphere to the ground.
In addition, we demonstrate a simple 1-D parameterization for thaw processes in permafrost areas rich in ground ice, which can phenomenologically reproduce both formation of thermokarst ponds and subsidence of the ground following thawing of ice-rich subsurface layers.
Long-term simulation from 1901 to 2100 driven by reanalysis data and climate model output demonstrate that the hydrological regime can both accelerate and delay permafrost thawing.
If meltwater from thawed ice-rich layers can drain, the ground subsides, as well as the formation of a talik, are delayed.
If the meltwater pools at the surface, a pond is formed that enhances heat transfer in the ground and leads to the formation of a talik.
The model results suggest that the trajectories of future permafrost thaw are strongly influenced by the cryostratigraphy, as determined by the late Quaternary history of a site.
Related Results
Simulating the thermal regime and thaw processes of ice-rich permafrost ground with the land-surface model CryoGrid 3
Simulating the thermal regime and thaw processes of ice-rich permafrost ground with the land-surface model CryoGrid 3
Abstract. Thawing of permafrost in a warming climate is governed by a complex interplay of different processes, of which only conductive heat transfer is taken into account in most...
Near-Surface Properties of Europa Constrained by the Galileo PPR Measurements
Near-Surface Properties of Europa Constrained by the Galileo PPR Measurements
NASA's Europa Clipper mission will characterize the current and recent surface activity of the icy-moon Europa through a wide range of remote sensing observations. In particular, t...
Review article: A systematic review of terrestrial dissolved organic carbon in northern permafrost
Review article: A systematic review of terrestrial dissolved organic carbon in northern permafrost
Abstract. As the permafrost region warms and permafrost soils thaw, vast pools of soil organic carbon (C) become vulnerable to enhanced microbial decomposition and lateral transpor...
Geocryological Zones Of Antarctica (Abstract only)
Geocryological Zones Of Antarctica (Abstract only)
Criteria for the determination of geocryological zones are: (1) distribution of permafrost, (2) the mean annual temperature of permafrost, (3) thickness of the active layer, (4) ty...
ILLUQ - Permafrost, Pollution, Health in Arctic coastal regions
ILLUQ - Permafrost, Pollution, Health in Arctic coastal regions
Climate change is one of the most significant global challenges of our time, with far-reaching impacts on human and environmental health. Permafrost underlies 22% of the Northern H...
Modeling recent permafrost thaw and associated hydrological changes in an endorheic Tibetan watershed
Modeling recent permafrost thaw and associated hydrological changes in an endorheic Tibetan watershed
<p>Permafrost has a crucial influence on sub-surface water flow and thus on the hydrology of catchments. Its thawing drives the release of frozen water and a transiti...
Transient modeling of the ground thermal conditions using satellite data in the Lena River delta, Siberia
Transient modeling of the ground thermal conditions using satellite data in the Lena River delta, Siberia
Abstract. Permafrost is a sensitive element of the cryosphere, but operational monitoring of the ground thermal conditions on large spatial scales is still lacking. Here, we demons...
EO-based modelling and mapping of permafrost
EO-based modelling and mapping of permafrost
Observations have shown that climate is warming, and permafrost is thawing. The major questions now facing us are what are its impacts and consequences, and what can we can do abou...

