Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Effect of Pentanol-Diesel Fuel Blends on Thermo-Physical Properties, Combustion Characteristics, Engine Performance and Emissions of a Diesel Engine

View through CrossRef
The objective of this study is to analyse the effect of pentanol-diesel fuel blends on thermo-physical properties, combustion characteristics, engine performance, and emissions of a diesel engine. The experimental tests were performed using YANMAR TF120M single-cylinder, direct-injection diesel engine. The fuel tests were evaluated using 5 %, 10 %, and 20 % pentanol added onto diesel fuel (DF), denoted as PE5, PE10 and PE20, respectively, to produce pentanol-diesel fuel blends at a constant engine speed of 1800 rpm under various engine loads. Based on the results, thermo-physical properties show that the calorific value, density, and kinematic viscosity were reduced by 8.12 %, 1.2 %, and 12 % for PE20. In addition, at 25 % engine load, the in-cylinder pressure of PE5, PE10, and PE20, were reduced by 1.76 %, 3.43 %, and 6.54 %, respectively, compared to DF. Furthermore, maximum heat release rate of PE5, PE10, and PE20 were reduced by 6.74 %, 7.50 %, and 18.54 %, respectively, compared to DF at 25 % engine load. Moreover, at 25 % engine load, the brake specific fuel consumption of PE5 showed better performance result due to fuel consumptions usage being reduced by 20.83 %. Conversely, brake thermal efficiency increased by 11.2 %, at 25 % engine load for PE5. CO and CO2 emissions decreased by 9.99 % and 3.2 %, respectively, at 100 % engine load of PE20.
Title: Effect of Pentanol-Diesel Fuel Blends on Thermo-Physical Properties, Combustion Characteristics, Engine Performance and Emissions of a Diesel Engine
Description:
The objective of this study is to analyse the effect of pentanol-diesel fuel blends on thermo-physical properties, combustion characteristics, engine performance, and emissions of a diesel engine.
The experimental tests were performed using YANMAR TF120M single-cylinder, direct-injection diesel engine.
The fuel tests were evaluated using 5 %, 10 %, and 20 % pentanol added onto diesel fuel (DF), denoted as PE5, PE10 and PE20, respectively, to produce pentanol-diesel fuel blends at a constant engine speed of 1800 rpm under various engine loads.
Based on the results, thermo-physical properties show that the calorific value, density, and kinematic viscosity were reduced by 8.
12 %, 1.
2 %, and 12 % for PE20.
In addition, at 25 % engine load, the in-cylinder pressure of PE5, PE10, and PE20, were reduced by 1.
76 %, 3.
43 %, and 6.
54 %, respectively, compared to DF.
Furthermore, maximum heat release rate of PE5, PE10, and PE20 were reduced by 6.
74 %, 7.
50 %, and 18.
54 %, respectively, compared to DF at 25 % engine load.
Moreover, at 25 % engine load, the brake specific fuel consumption of PE5 showed better performance result due to fuel consumptions usage being reduced by 20.
83 %.
Conversely, brake thermal efficiency increased by 11.
2 %, at 25 % engine load for PE5.
CO and CO2 emissions decreased by 9.
99 % and 3.
2 %, respectively, at 100 % engine load of PE20.

Related Results

Experimental Study on Characteristics of Conical Spray and Combustion for Medium Speed D.I. Diesel Engine
Experimental Study on Characteristics of Conical Spray and Combustion for Medium Speed D.I. Diesel Engine
<div class="htmlview paragraph">This paper inverstigates a new way of conical spray for medium speed D. I. diesel engine, with which three different construction injectors we...
Diesel Engine Combustion Control: Medium or Heavy EGR?
Diesel Engine Combustion Control: Medium or Heavy EGR?
<div class="section abstract"><div class="htmlview paragraph">Exhaust Gas Recirculation (EGR) is an important parameter for control of diesel engine combustion, especia...
Evaluation of Liquefied Petroleum Gas as a Fuel Input in a Mechanical Injection Diesel Internal Combustion Engine
Evaluation of Liquefied Petroleum Gas as a Fuel Input in a Mechanical Injection Diesel Internal Combustion Engine
In this research, the performance of an internal combustion engine with an adapta-tion for liquefied petroleum gas (LPG) injection was analyzed. The automotive indus-try works on t...
Analysis of The Influences of Biodiesel On Performance and Emissions of a Diesel Engine
Analysis of The Influences of Biodiesel On Performance and Emissions of a Diesel Engine
Biodiesel remains an alternative fuel of interest for use in diesel engines. A common characteristic of biodiesel relative to petroleum diesel, is a lowered heating ...
Effects of Fuel Properties on Diesel Engine Exhaust Emission Characteristics
Effects of Fuel Properties on Diesel Engine Exhaust Emission Characteristics
<div class="htmlview paragraph">The effects of fuel properties on diesel engine exhaust emission characteristics are investigated using eleven kinds of fuel with varying leve...
Maintaining Marine Diesel Emissions Using Performance Monitoring
Maintaining Marine Diesel Emissions Using Performance Monitoring
Ships are an integral part of modern commercial transport, leisure travel, and military system. A diesel engine was used for the first time for the propulsion of a ship sometime in...
A Study on Combustion and Emission Characteristics of an Ammonia-Biodiesel Dual-Fuel Engine
A Study on Combustion and Emission Characteristics of an Ammonia-Biodiesel Dual-Fuel Engine
<div class="section abstract"><div class="htmlview paragraph">Internal combustion engines, as the dominant power source in the transportation sector and the primary con...
On-Board Ultrasonic Water-in-Diesel Emulsion (WiDE) Fuel System for Low-Emission Diesel Engine Combustion
On-Board Ultrasonic Water-in-Diesel Emulsion (WiDE) Fuel System for Low-Emission Diesel Engine Combustion
Water-in-diesel emulsion (WiDE) fuel is a promising alternative fuel capable of reducing nitrogen oxides (NOX) and particulate matter (PM) in diesel engine exhaust while simultaneo...

Back to Top