Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

SOCS-6 promotes mitochondrial fission and cardiomyocyte apoptosis and is negatively regulated by QKI mediated miR-19b

View through CrossRef
Abstract Background Ischemia/reperfusion (IR) injury following myocardial infarction can result in debilitating complications and morbidity. Mitochondrial dysfunction and abnormal mitochondrial fission have been implicated in the complications associated with IR injury as cardiomyocytes are abundant in mitochondria. SOCS-6 is known to participate in mitochondrial fragmentation but its exact involvement and the pathways associated are uncertain. Results In the present study, we examine the biological role and regulation of SOCS-6 in mitochondrial dynamics using hypoxia and reoxygenation (H/R) in cardiomyocytes and with a murine model of IR injury. We found that SOCS-6 inhibition by RNA interference attenuated H/R-induced mitochondrial fission and apoptosis in cardiomyocytes. A luciferase assay indicated that SOCS-6 is a direct target of miR-19b. The overexpression of miR-19b decreased mitochondrial fission and apoptosis in vitro . Moreover, the presence of miR-19b reduced the level of SOCS-6 and the injury caused by IR in vivo . There were less apoptotic cells in the myocardium of mice injected with miR-19b. In addition, we found that the RNA-binding protein, QKI, participates in the regulation of miR-19b expression. Conclusions Our results indicate that the inhibition of mitochondrial fission through downregulating SOCS-6 via the QKI/miR-19b/SOCS-6 pathway attenuated the damage sustained by IR. The QKI/miR-19b/SOCS-6 axis plays a vital role in regulation of mitochondrial fission and cardiomyocyte apoptosis and could form the basis of future research in the development of therapies for the management of cardiac diseases.
Title: SOCS-6 promotes mitochondrial fission and cardiomyocyte apoptosis and is negatively regulated by QKI mediated miR-19b
Description:
Abstract Background Ischemia/reperfusion (IR) injury following myocardial infarction can result in debilitating complications and morbidity.
Mitochondrial dysfunction and abnormal mitochondrial fission have been implicated in the complications associated with IR injury as cardiomyocytes are abundant in mitochondria.
SOCS-6 is known to participate in mitochondrial fragmentation but its exact involvement and the pathways associated are uncertain.
Results In the present study, we examine the biological role and regulation of SOCS-6 in mitochondrial dynamics using hypoxia and reoxygenation (H/R) in cardiomyocytes and with a murine model of IR injury.
We found that SOCS-6 inhibition by RNA interference attenuated H/R-induced mitochondrial fission and apoptosis in cardiomyocytes.
A luciferase assay indicated that SOCS-6 is a direct target of miR-19b.
The overexpression of miR-19b decreased mitochondrial fission and apoptosis in vitro .
Moreover, the presence of miR-19b reduced the level of SOCS-6 and the injury caused by IR in vivo .
There were less apoptotic cells in the myocardium of mice injected with miR-19b.
In addition, we found that the RNA-binding protein, QKI, participates in the regulation of miR-19b expression.
Conclusions Our results indicate that the inhibition of mitochondrial fission through downregulating SOCS-6 via the QKI/miR-19b/SOCS-6 pathway attenuated the damage sustained by IR.
The QKI/miR-19b/SOCS-6 axis plays a vital role in regulation of mitochondrial fission and cardiomyocyte apoptosis and could form the basis of future research in the development of therapies for the management of cardiac diseases.

Related Results

Mitochondria Fusion and Fission
Mitochondria Fusion and Fission
Abstract Mitochondrial structural dynamics is regulated by the fusion or fission of these organelles. Recently published evidence indicates the ...
The effect of miR-138 on the proliferation and apoptosis of breast cancer cells through the NF-κB/VEGF signaling pathway
The effect of miR-138 on the proliferation and apoptosis of breast cancer cells through the NF-κB/VEGF signaling pathway
The analyze the effect of miR-138 on the proliferation and apoptosis of breast cancer cells through the NF-κB/VEGF signaling pathway is the Objective of this experiment. For this a...
GW24-e3762 Role Of mitochondrial fission In cardiac microvascular endothelial cells after ischaemia/reperfusion
GW24-e3762 Role Of mitochondrial fission In cardiac microvascular endothelial cells after ischaemia/reperfusion
Objectives This study is aimed to establish a simulated ischaemia/reperfusion (SI/R) model in cultured CMECs from adult rat, and investigate the role of mitochond...
MICRORNA-15B IS IMPLICATED IN REGULATING MYOCARDIAL REPERFUSION INJURY BY PROMOTING APOPTOSIS
MICRORNA-15B IS IMPLICATED IN REGULATING MYOCARDIAL REPERFUSION INJURY BY PROMOTING APOPTOSIS
Objectives Myocardial ischaemia reperfusion (I/R) could induce altered expression of microRNAs (miRNAs), which served as powerful regulators of gene expression. C...
The effect of miRNAs and MALAT1 related with the prognosis of Her-2 positive breast cancer patients with lymph node metastasis
The effect of miRNAs and MALAT1 related with the prognosis of Her-2 positive breast cancer patients with lymph node metastasis
Abstract Background: To analyze and screen the miRNAs associated with lymph node metastasis of breast cancer (BC), and to explore the roles of these miRNAs in the prolifera...
miR-19b-3p/PKNOX1 Regulates Viral Myocarditis by Regulating Macrophage Polarization
miR-19b-3p/PKNOX1 Regulates Viral Myocarditis by Regulating Macrophage Polarization
Objective: The purpose of this study was to study the role and mechanism of miR-19b-3p in regulating myocardial inflammation and injury of viral myocarditis in viral myocarditis in...

Back to Top