Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Effect of Salt Stresses on Seed Germination and Early Seedling Growth of Camelina sativa L.

View through CrossRef
Camelina sativa is a promising low-input, high yielding biodiesel crop that can be suitable to grow on marginal lands and is a good source of omega-3 fatty acids. But, saltiness is an overall issue of agriculture that constrains the germination, development and productivity of plant because of osmotic and ionic poisonous quality impacts. The aim of this study was to assess the effect of salinity (NaCl and KCl) on germination and early seedling growth of Camelina sativa. Camelina sativa seeds were obtained from agricultural research sector of Wachemo University. In the laboratory, six salinity levels of NaCl and KCl (0, 1, 2, 3, 4 and 5 g/L) were prepared and arranged in completely randomized design with four replications. The result of the study revealed that C. sativa seedlings were differ significantly (p<0.05) on speed of germination, germination percentage, germination index, shoot length, root length, vigor index, root shoot ratio and seedling fresh weight, relative injury rates  of NaCl and KCl, shoot height reduction and root height reduction. However, there is no significant effect between salt type versus salinity level and salt type in all parameters tested except shoot length and shoot height reduction at 5% significant level. The increase in both salts (NaCl and KCl) concentration in culture medium causes a significant decreases in speed of germination, germination percentage, germination index, shoot length, root length, vigor index, root shoot ratio and seedling fresh weight of the salt treated C. sativa seeds as compared with the control (C. sativa seeds watered with distilled water). Similarly, relative injury rates NaCl and KCl shoot height reduction, root height reduction were highly increased as salinity level increases. Generally, as the concentration of NaCl and KCl was increased the overall germination and early seedling performance of C. sativa decreased. The effect of salinity on physiology, molecular and biochemical of properties of C. sativa should be studied. Keywords: Camelina sativa, Salinity effect, NaCl, KCl, Seed germination, Seedling growth.
Title: Effect of Salt Stresses on Seed Germination and Early Seedling Growth of Camelina sativa L.
Description:
Camelina sativa is a promising low-input, high yielding biodiesel crop that can be suitable to grow on marginal lands and is a good source of omega-3 fatty acids.
But, saltiness is an overall issue of agriculture that constrains the germination, development and productivity of plant because of osmotic and ionic poisonous quality impacts.
The aim of this study was to assess the effect of salinity (NaCl and KCl) on germination and early seedling growth of Camelina sativa.
Camelina sativa seeds were obtained from agricultural research sector of Wachemo University.
In the laboratory, six salinity levels of NaCl and KCl (0, 1, 2, 3, 4 and 5 g/L) were prepared and arranged in completely randomized design with four replications.
The result of the study revealed that C.
sativa seedlings were differ significantly (p<0.
05) on speed of germination, germination percentage, germination index, shoot length, root length, vigor index, root shoot ratio and seedling fresh weight, relative injury rates  of NaCl and KCl, shoot height reduction and root height reduction.
However, there is no significant effect between salt type versus salinity level and salt type in all parameters tested except shoot length and shoot height reduction at 5% significant level.
The increase in both salts (NaCl and KCl) concentration in culture medium causes a significant decreases in speed of germination, germination percentage, germination index, shoot length, root length, vigor index, root shoot ratio and seedling fresh weight of the salt treated C.
sativa seeds as compared with the control (C.
sativa seeds watered with distilled water).
Similarly, relative injury rates NaCl and KCl shoot height reduction, root height reduction were highly increased as salinity level increases.
Generally, as the concentration of NaCl and KCl was increased the overall germination and early seedling performance of C.
sativa decreased.
The effect of salinity on physiology, molecular and biochemical of properties of C.
sativa should be studied.
Keywords: Camelina sativa, Salinity effect, NaCl, KCl, Seed germination, Seedling growth.

Related Results

Global patterns in the evolutionary relations between seed mass and germination traits
Global patterns in the evolutionary relations between seed mass and germination traits
AbstractDuring stressful climatic periods, plant populations face significant challenges, especially during germination and seedling establishment. Theoretical studies present conf...
Influence of seed sources on germination and seedling vigour of Pinus gerardiana
Influence of seed sources on germination and seedling vigour of Pinus gerardiana
An experiment was conducted to study the influence of seed sources on seed germination and seedling vigour of Pinus gerardiana seeds collected from 23 seed sources during October, ...
Effect of PGPR-1 Biofertilizer on Germination and Seedling Growth of Sweet Corn under Temperature Stress Conditions
Effect of PGPR-1 Biofertilizer on Germination and Seedling Growth of Sweet Corn under Temperature Stress Conditions
Seed germination and seedling growth are important stages affecting crop yield. However, extreme temperatures often inhibit germination and growth, preventing crops from reaching t...
Genetic and Physiological Insights into Salt Resistance in Rice through Analysis of Germination, Seedling Traits, and QTL Identification
Genetic and Physiological Insights into Salt Resistance in Rice through Analysis of Germination, Seedling Traits, and QTL Identification
Understanding the genetic basis of salt resistance in crops is crucial for agricultural productivity. This study investigates the phenotypic and genetic basis of salt stress respon...
Salinity Tolerance of Phaseolus Species during Germination and Early Seedling Growth
Salinity Tolerance of Phaseolus Species during Germination and Early Seedling Growth
Salinity tolerance during germination and early seedling growth was evaluated for 24 accessions representing four wild Phaseolus species (P. angustissimus A. Gray, P. filiformis Be...

Back to Top