Javascript must be enabled to continue!
Modeling of Intramatrix Heat Transfer in Thermal Energy Storage for Asynchronous Cooling
View through CrossRef
In this paper, we investigate sensible and latent heat transfer through heat exchanger matrix structures containing phase change material (PCM) in the interstitial spacing. The heat transfer is driven by a temperature difference between fluid flow passages and the phase change material matrix which experiences sensible heat transfer until it reaches the phase change material fusion point; then it undergoes melting or solidification in order to store, or reject, energy. In prior work, a dimensionless framework was established to model heat transfer in a thermal energy storage (TES) device much like effectiveness-NTU analysis methods for compact heat exchangers. A key difference, however, is that in TES units, the overall heat transfer coefficient, U, within the phase change material matrix varies spatially in the unit and with time during storage or extraction. Determination of a mean U for these processes is a key challenge to applying the effectiveness-NTU analysis to design of a TES unit. This paper assesses and identifies strategies for determining the matrix overall heat transfer coefficient in a TES unit from model predictions or experiments. The sensitivity of the TES energy efficiency to the matrix overall heat transfer coefficient is also explored, and the implications for some typical applications are discussed.
American Society of Mechanical Engineers
Title: Modeling of Intramatrix Heat Transfer in Thermal Energy Storage for Asynchronous Cooling
Description:
In this paper, we investigate sensible and latent heat transfer through heat exchanger matrix structures containing phase change material (PCM) in the interstitial spacing.
The heat transfer is driven by a temperature difference between fluid flow passages and the phase change material matrix which experiences sensible heat transfer until it reaches the phase change material fusion point; then it undergoes melting or solidification in order to store, or reject, energy.
In prior work, a dimensionless framework was established to model heat transfer in a thermal energy storage (TES) device much like effectiveness-NTU analysis methods for compact heat exchangers.
A key difference, however, is that in TES units, the overall heat transfer coefficient, U, within the phase change material matrix varies spatially in the unit and with time during storage or extraction.
Determination of a mean U for these processes is a key challenge to applying the effectiveness-NTU analysis to design of a TES unit.
This paper assesses and identifies strategies for determining the matrix overall heat transfer coefficient in a TES unit from model predictions or experiments.
The sensitivity of the TES energy efficiency to the matrix overall heat transfer coefficient is also explored, and the implications for some typical applications are discussed.
Related Results
Thermal energy storage with tunnels in different subsurface conditions
Thermal energy storage with tunnels in different subsurface conditions
The widespread use of the underground and global climate change impact the urban subsurface temperature. Changes in the subsurface environment can affect the performance of undergr...
Thermal performance of energy barrettes in an urban environment
Thermal performance of energy barrettes in an urban environment
Energy geostructures are renewable heating and cooling technologies that promise to massively decarbonize buildings with other shallow geothermal heat exchangers. However, the perf...
Film Cooling Calculations With an Iterative Conjugate Heat Transfer Approach Using Empirical Heat Transfer Coefficient Corrections
Film Cooling Calculations With an Iterative Conjugate Heat Transfer Approach Using Empirical Heat Transfer Coefficient Corrections
An iterative conjugate heat transfer technique has been developed to predict the temperatures on film cooled surfaces such as flat plates and turbine blades. Conventional approache...
Simplified Heat Transfer Model for Spiral‐Coil Energy Pile Groups and the Pile–Pile Thermal Interference
Simplified Heat Transfer Model for Spiral‐Coil Energy Pile Groups and the Pile–Pile Thermal Interference
ABSTRACTThe spiral heat exchanger of the energy pile groups is divided into multiple segments. Each heat exchanger segment is regarded as a three‐dimensional spiral heat source of ...
Effect of ocean heat flux on Titan's topography and tectonic stresses
Effect of ocean heat flux on Titan's topography and tectonic stresses
INTRODUCTIONThe thermo-mechanical evolution of Titan's ice shell is primarily controlled by the mode of the heat transfer in the ice shell and the amount of heat coming from the oc...
Incorporating phase change materials in geothermal energy piles for thermal energy storage
Incorporating phase change materials in geothermal energy piles for thermal energy storage
Introduction
Geothermal energy piles (GEPs) are foundation elements that are installed in the ground to support the weight of the building to a competent strata. Energy loops...
Numerical Investigation of Heat Transfer Characteristics of a Novel Wavy-Tapered Microchannel Heat Sink
Numerical Investigation of Heat Transfer Characteristics of a Novel Wavy-Tapered Microchannel Heat Sink
In the present study, a multi-variable comparative study of the effect of microchannel heat sink configurations on their thermal performance is conducted by numerically simulating ...
Enhancement of Film Cooling Effectiveness Using Dean Vortices
Enhancement of Film Cooling Effectiveness Using Dean Vortices
Abstract
Film cooling technology is widely used in gas turbines. Improvement of gas turbine thermal efficiency, specific power and specific thrust can be achieved by...

