Javascript must be enabled to continue!
Protraction of Einstein operators for decision-making under q-rung orthopair fuzzy model
View through CrossRef
An q-rung orthopair fuzzy set is a generalized structure that covers the modern extensions of fuzzy set, including intuitionistic fuzzy set and Pythagorean fuzzy set, with an adjustable parameter q that makes it flexible and adaptable to describe the inexact information in decision making. The condition of q-rung orthopair fuzzy set, i.e., sum of qth power of membership degree and nonmembership degree is bounded by one, makes it highly competent and adequate to get over the limitations of existing models. The basic purpose of this study is to establish some aggregation operators under the q-rung orthopair fuzzy environment with Einstein norm operations. Motivated by innovative features of Einstein operators and dominant behavior of q-rung orthopair fuzzy set, some new aggregation operators, namely, q-rung orthopair fuzzy Einstein weighted averaging, q-rung orthopair fuzzy Einstein ordered weighted averaging, generalized q-rung orthopair fuzzy Einstein weighted averaging and generalized q-rung orthopair fuzzy Einstein ordered weighted averaging operators are defined. Furthermore, some properties related to proposed operators are presented. Moreover, multi-attribute decision making problems related to career selection, agriculture land selection and residential place selection are presented under these operators to show the capability and proficiency of this new idea. The comparison analysis with existing theories shows the superiorities of proposed model.
SAGE Publications
Title: Protraction of Einstein operators for decision-making under q-rung orthopair fuzzy model
Description:
An q-rung orthopair fuzzy set is a generalized structure that covers the modern extensions of fuzzy set, including intuitionistic fuzzy set and Pythagorean fuzzy set, with an adjustable parameter q that makes it flexible and adaptable to describe the inexact information in decision making.
The condition of q-rung orthopair fuzzy set, i.
e.
, sum of qth power of membership degree and nonmembership degree is bounded by one, makes it highly competent and adequate to get over the limitations of existing models.
The basic purpose of this study is to establish some aggregation operators under the q-rung orthopair fuzzy environment with Einstein norm operations.
Motivated by innovative features of Einstein operators and dominant behavior of q-rung orthopair fuzzy set, some new aggregation operators, namely, q-rung orthopair fuzzy Einstein weighted averaging, q-rung orthopair fuzzy Einstein ordered weighted averaging, generalized q-rung orthopair fuzzy Einstein weighted averaging and generalized q-rung orthopair fuzzy Einstein ordered weighted averaging operators are defined.
Furthermore, some properties related to proposed operators are presented.
Moreover, multi-attribute decision making problems related to career selection, agriculture land selection and residential place selection are presented under these operators to show the capability and proficiency of this new idea.
The comparison analysis with existing theories shows the superiorities of proposed model.
Related Results
A new (p, q)− rung orthopair fuzzy SIR method with a multi-criteria decision making approach
A new (p, q)− rung orthopair fuzzy SIR method with a multi-criteria decision making approach
Abstract
In comparison to Fermatean, Pythagorean, and intuitionistic fuzzy sets, (p; q)—rung orthopair fuzzy sets have a wider range of displaying membership grades and can...
Konstruksi Sistem Inferensi Fuzzy Menggunakan Subtractive Fuzzy C-Means pada Data Parkinson
Konstruksi Sistem Inferensi Fuzzy Menggunakan Subtractive Fuzzy C-Means pada Data Parkinson
Abstract. Fuzzy Inference System requires several stages to get the output, 1) formation of fuzzy sets, 2) formation of rules, 3) application of implication functions, 4) compositi...
Generated Fuzzy Quasi-ideals in Ternary Semigroups
Generated Fuzzy Quasi-ideals in Ternary Semigroups
Here in this paper, we provide characterizations of fuzzy quasi-ideal in terms of level and strong level subsets. Along with it, we provide expression for the generated fuzzy quasi...
New Approaches of Generalised Fuzzy Soft sets on fuzzy Codes and Its Properties on Decision-Makings
New Approaches of Generalised Fuzzy Soft sets on fuzzy Codes and Its Properties on Decision-Makings
Background Several scholars defined the concepts of fuzzy soft set theory and their application on decision-making problem. Based on this concept, researchers defined the generalis...
Intuitionistic Fuzzy Rough TOPSIS Method for Robot Selection using Einstein operators
Intuitionistic Fuzzy Rough TOPSIS Method for Robot Selection using Einstein operators
Abstract
Rough set and intuitionistic fuzzy set are very vital role in the decision making method for handling the uncertain and imprecise data of decision makers. The tech...
q-Rung Orthopair Fuzzy Archimedean Aggregation Operators: Application in the Site Selection for Software Operating Units
q-Rung Orthopair Fuzzy Archimedean Aggregation Operators: Application in the Site Selection for Software Operating Units
The q-rung orthopair fuzzy (q-ROF) set is an efficient tool for dealing with uncertain and inaccurate data in real-world multi-attribute decision-making (MADM). In MADM, aggregatio...
Dual Hesitant Pythagorean Fuzzy Heronian Mean Operators in Multiple Attribute Decision Making
Dual Hesitant Pythagorean Fuzzy Heronian Mean Operators in Multiple Attribute Decision Making
On account of the indeterminacy and subjectivity of decision makers (DMs) in complexity decision-making environments, the evaluation information over alternatives presented by DMs ...
Fuzzy Chaotic Neural Networks
Fuzzy Chaotic Neural Networks
An understanding of the human brain’s local function has improved in recent years. But the cognition of human brain’s working process as a whole is still obscure. Both fuzzy logic ...


