Javascript must be enabled to continue!
A review of the literature on the underground (buried) storage tanks
View through CrossRef
The main objective of fluid storage tanks construction is to construct safe and low-cost storage tanks which are resistant against earthquake. But in the computer design methods for the design of low cost and high performance storage tanks, little attention has been paid to development of quantities. In this study, first the underground tanks were compared to non-underground storage tanks and the results showed that underground tanks had better performance in terms of maximum displacement and stress against their wall. Afterwards, the impact of changes made in the underground tanks through the depth of underground tank, the type of soil around the tank, the distribution of dynamic pressure by different fluids, the impact of water depth on the tank frequency, and ratio of length to height on frequency of the tank, was investigated. The results of this study suggest that any increase in the tank depth leads to an increase of the tension and displacement and with softer soil around the tank more critical results will be achieved. In addition, the fluid dynamic pressure distribution is strongly linked to the specific weight of the fluid. With any rise in the water level of the tank or increase of length to height ratio, the frequency of the tank is reduced.
University of Western Ontario, Western Libraries
Title: A review of the literature on the underground (buried) storage tanks
Description:
The main objective of fluid storage tanks construction is to construct safe and low-cost storage tanks which are resistant against earthquake.
But in the computer design methods for the design of low cost and high performance storage tanks, little attention has been paid to development of quantities.
In this study, first the underground tanks were compared to non-underground storage tanks and the results showed that underground tanks had better performance in terms of maximum displacement and stress against their wall.
Afterwards, the impact of changes made in the underground tanks through the depth of underground tank, the type of soil around the tank, the distribution of dynamic pressure by different fluids, the impact of water depth on the tank frequency, and ratio of length to height on frequency of the tank, was investigated.
The results of this study suggest that any increase in the tank depth leads to an increase of the tension and displacement and with softer soil around the tank more critical results will be achieved.
In addition, the fluid dynamic pressure distribution is strongly linked to the specific weight of the fluid.
With any rise in the water level of the tank or increase of length to height ratio, the frequency of the tank is reduced.
Related Results
Evaluating the Science to Inform the Physical Activity Guidelines for Americans Midcourse Report
Evaluating the Science to Inform the Physical Activity Guidelines for Americans Midcourse Report
Abstract
The Physical Activity Guidelines for Americans (Guidelines) advises older adults to be as active as possible. Yet, despite the well documented benefits of physical a...
Case Study of the Revolutionary Approach of the Middle East's First Sustainable Underground Salt Cavern Oil Storage, Well-Design, Drilling Challenges, and Mitigations
Case Study of the Revolutionary Approach of the Middle East's First Sustainable Underground Salt Cavern Oil Storage, Well-Design, Drilling Challenges, and Mitigations
Abstract
The strategic storage of crude oil in underground salt caverns is a practice that has been refined over decades. These caverns provide a secure and cost-eff...
Alternative Entrances: Phillip Noyce and Sydney’s Counterculture
Alternative Entrances: Phillip Noyce and Sydney’s Counterculture
Phillip Noyce is one of Australia’s most prominent film makers—a successful feature film director with both iconic Australian narratives and many a Hollywood blockbuster under his ...
Seismic Response of Ground-Supported Circular Concrete Tanks
Seismic Response of Ground-Supported Circular Concrete Tanks
This study is focused on the nonlinear behavior of ground-supported open top circular concrete tanks under the effect of seismic loads. The tank support conditions are considered i...
Seismic Response of Ground-Supported Circular Concrete Tanks
Seismic Response of Ground-Supported Circular Concrete Tanks
This study is focused on the nonlinear behavior of ground-supported open top circular concrete tanks under the effect of seismic loads. The tank support conditions are considered i...
The Challenges of Underground Hydrogen Gas Storage
The Challenges of Underground Hydrogen Gas Storage
ABSTRACT:
While hydrogen as a gas (H2) has been stored in salt caverns on the American Gulf Coast for the last 40 years, it’s attributes are a challenge for under...
Empowering Underground Laboratories Network Usage in the Baltic Sea Region
Empowering Underground Laboratories Network Usage in the Baltic Sea Region
<p>In the Baltic Sea region, there are world leading science organisations and industrial companies specialised in geophysics, geology and underground construction. T...
Thermal energy storage with tunnels in different subsurface conditions
Thermal energy storage with tunnels in different subsurface conditions
The widespread use of the underground and global climate change impact the urban subsurface temperature. Changes in the subsurface environment can affect the performance of undergr...

