Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Mechanisms behind climate oscillations in last glacial maximum simulations

View through CrossRef
<div> <div> <p>Millennial-scale variability has been extensively observed across the last glacial period records (115 to 12 thousand years ago) but reproducing it on general circulation models remains a challenge. In recent years, a growing number of climate models have reported simulations with oscillating behaviours comparable to typical abrupt climate changes, although often relying on unrealistic forcing fields and/or boundary conditions. This may become an issue when trying to review the mechanisms at stake because of glacial climates’ sensitivity to these parameters, notably ice sheets geometry and greenhouse gases concentration.</p> </div> <div> <p>With the addition of snapshots of the early last deglaciation meltwater history over a last glacial maximum (~21 thousand years ago) equilibrium simulation, we obtained different regimes of climate variability, including oscillations that provides the perfect framework for studying abrupt climate changes dynamics in a glacial background. The oscillations consist of shifts between cold modes with a weak to almost collapsed Atlantic Meridional Ocean Circulation (AMOC) and warmer and stronger AMOC modes, with large reorganisation of the deep-water formation sites, surface ocean and atmospheric circulations. The phenomenon has a periodicity of roughly every 1500 years and can be linked to changes of about 10°C in Greenland. This new set of simulation suggests an intricate large-scale coupling between ice, ocean, and atmosphere in the North Atlantic when meltwater is discharged to the North Atlantic.</p> </div> <div> <p>Most attempts at theorising millennial-scale variability have involved vast transfers of salt between the subtropical and subpolar gyres, often referred to as the salt oscillator mechanism, that in turn controlled the intensity of the north Atlantic current. We believe that the salt oscillator is in fact part of a larger harmonic motion spanning through all components of the climate system and that can enter into resonance under the specific boundary conditions and/or forcing. Illustrated by the mapping of the main salinity and heat fluxes on the oscillating simulations, we propose a new interpretation of the salt oscillator that includes the stochastic resonance phenomenon as well as the effect of meltwater forcing.</p> </div> </div>
Title: Mechanisms behind climate oscillations in last glacial maximum simulations
Description:
<div> <div> <p>Millennial-scale variability has been extensively observed across the last glacial period records (115 to 12 thousand years ago) but reproducing it on general circulation models remains a challenge.
In recent years, a growing number of climate models have reported simulations with oscillating behaviours comparable to typical abrupt climate changes, although often relying on unrealistic forcing fields and/or boundary conditions.
This may become an issue when trying to review the mechanisms at stake because of glacial climates’ sensitivity to these parameters, notably ice sheets geometry and greenhouse gases concentration.
</p> </div> <div> <p>With the addition of snapshots of the early last deglaciation meltwater history over a last glacial maximum (~21 thousand years ago) equilibrium simulation, we obtained different regimes of climate variability, including oscillations that provides the perfect framework for studying abrupt climate changes dynamics in a glacial background.
The oscillations consist of shifts between cold modes with a weak to almost collapsed Atlantic Meridional Ocean Circulation (AMOC) and warmer and stronger AMOC modes, with large reorganisation of the deep-water formation sites, surface ocean and atmospheric circulations.
The phenomenon has a periodicity of roughly every 1500 years and can be linked to changes of about 10°C in Greenland.
This new set of simulation suggests an intricate large-scale coupling between ice, ocean, and atmosphere in the North Atlantic when meltwater is discharged to the North Atlantic.
</p> </div> <div> <p>Most attempts at theorising millennial-scale variability have involved vast transfers of salt between the subtropical and subpolar gyres, often referred to as the salt oscillator mechanism, that in turn controlled the intensity of the north Atlantic current.
We believe that the salt oscillator is in fact part of a larger harmonic motion spanning through all components of the climate system and that can enter into resonance under the specific boundary conditions and/or forcing.
Illustrated by the mapping of the main salinity and heat fluxes on the oscillating simulations, we propose a new interpretation of the salt oscillator that includes the stochastic resonance phenomenon as well as the effect of meltwater forcing.
</p> </div> </div>.

Related Results

Climate and Culture
Climate and Culture
Climate is, presently, a heatedly discussed topic. Concerns about the environmental, economic, political and social consequences of climate change are of central interest in academ...
The critical state behavior of saturated glacial till
The critical state behavior of saturated glacial till
A large number of glacial tills are distributed in the high and cold mountainous areas of the Qinghai-Tibet Plateau. Recently, climate change compounded by many other factors, prom...
A Synergistic Imperative: An Integrated Policy and Education Framework for Navigating the Climate Nexus
A Synergistic Imperative: An Integrated Policy and Education Framework for Navigating the Climate Nexus
Climate change acts as a systemic multiplier of threats, exacerbating interconnected global crises that jeopardize food security, biodiversity, and environmental health. These chal...
Structures of the asymmetrical bursting oscillation attractors and their bifurcation mechanisms
Structures of the asymmetrical bursting oscillation attractors and their bifurcation mechanisms
The main purpose of this study is to investigate the characteristics as well as the bifurcation mechanisms of the bursting oscillations in the asymmetrical dynamical system with tw...
A revised look at Canada's landscape: glacial processes and dynamics
A revised look at Canada's landscape: glacial processes and dynamics
Our understanding of the Laurentide Ice Sheet has been significantly improved by recent developments in theoretical models of ice sheets and ice dynamics, understanding of mechanis...
A revised look at Canada's landscape: glacial processes and dynamics
A revised look at Canada's landscape: glacial processes and dynamics
Our understanding of the Laurentide Ice Sheet has been significantly improved by recent developments in theoretical models of ice sheets and ice dynamics, understanding of mechanis...
Uncoupling the roles of firing rates and spike bursts in shaping the STN-GPe beta band oscillations
Uncoupling the roles of firing rates and spike bursts in shaping the STN-GPe beta band oscillations
AbstractThe excess of 15-30 Hz (β-band) oscillations in the basal ganglia is one of the key signatures of Parkinson’s disease (PD). The STN-GPe network is integral to generation an...
Glacial geomorphology of the Bayan Har sector of the NE Tibetan Plateau
Glacial geomorphology of the Bayan Har sector of the NE Tibetan Plateau
We here present a detailed glacial geomorphological map covering 136,500 km2 of the Bayan Har sector of the northeastern Tibetan Plateau - an area previously suggested to have nour...

Back to Top